Sustainability in Housing: Perceptions of Real Estate Agents, Building Professionals & Householders

Bond, Pacifici, & Newman

This research was supported under Australian Research Council's Discovery Projects funding scheme (project DP0985410). The views expressed herein are those of the authors & are not necessarily those of the Australian Research Council.

Sustainability in the Built Environment

> Australia produces the *highest GHG* emissions per unit of GDP in the world!

 Buildings account for around 25-30%
 Improving energy efficiency of buildings is the *quickest & most cost effective* way of reducing GHG emissions

GHG emissions & energy use in homes

Source: Australian Greenhouse Office 2008

National Strategy on Energy Efficiency 2009-2020

- It stringency of energy efficient requirements in the Building Code of Australia from 2010
- Phase in mandatory disclosure of energy efficiency
 - Homes: BCA 6* minimum by 2011 •Hot-water systems & lighting: new efficiency requirements
 - Incentives, rebates, grants: e.g. Green Loan program (on hold), water tanks, PV, Solar HW

Literature Review

Barriers to uptake of renewable energy in homes:

- Upfront capital costs of EE measures
- Lack of consumer information when buying
- Split incentives between builders (cheap to build, expensive to run) & the householders
- Survey reported by ABS (2006) showed:
- Adoption of energy conserving behaviours is greatest where it is:
 - Convenient
 - Does not require a lot of time
 - Does not require a lot of money

Research Aims

Identify knowledge of, & attitudes towards, sustainability in the residential housing market by major stakeholders: **Building professionals** Householders **Real estate agents** Identify drivers & barriers to greening the housing market

Encourage behaviour change & Increase uptake of sustainability practices To: Reduce GHGe 6

Methodology:

Survey respondents nation wide:

- 1. Building professionals (postal & online)
 - 390 Master Builders Association
 - Response: 18%
- 2. Householders (postal only)
 - 1250 5 Largest cities by population
 - Response: 6.8%

Survey real estate agents in Perth

- 3. 163 invited licensee agents to attend educational workshop on sustainability in housing by CUSP Institute
 - Response: 11 agents able to attend (5.6%)

1. Results – Building Professionals

71% have seen an increase in demand for more energy efficient sustainable homes
Reasons given:

- Cost savings
- Increased awareness of climate change
- Govt. rebates & incentives
- Droughts (water shortages)

1. Results - BPs

Proportion of developments that incorporate specific features cont:

- 1. Passive solar
 - most cost effective, "common sense"
- 2. Rainwater tanks
 - rebates
- 3. Solar water
 - high sunshine hours, rebates
- Less demanded:
- Double glazing (38%, 1-10% of time)
- Grey water system (36%, 1-10% of time)
- PV panels (33%, 1-10% of time)
 - Too expensive

1 Results - BP : Preferred features

Rank	New homes	Retrofitting existing
1	Passive Solar Design	Connected to Gas
2	Connected to Gas	Solar Water Heating
3	Rain Water Tank	Rain Water Tank
4	Solar Water Heating	Photo Voltaic Panels
5	Double Glazing	Grey Water System
6	Grey Water System	Double Glazing
7	Photo Voltaic Panels	Others
8	Others	

Survey Results

Preferred options from client perspective cont:

- Rankings related to cost (incl. availability of rebates)
- Double glazing considered too expensive & not necessary in a warm climate

Grey water too expensive & issues getting council approval

Most successful features cont.

Most commonly listed:

- Passive Solar Design
- High R-value insulation
- High performance &/or double glazing
- Solar hot water
- **General responses:**
- Design stage is key to energy efficiency

BUT: speculative developers look to max profits by min costs & good design may sell, but in terms of aesthetics not EE

Willingness to Pay for Green

Cost Premium	Valid Percent (%)
Pay No More	12.5
1-5% more	35.7
6-10% more	30.4

Benefits of Green Buildings

Rank	Financial and Non-Financial Benefit
1	Cost savings e.g. >\$1000p.a.+
2	Increased property value
3	"Doing the right thing"
4	Healthy indoor air quality
5	Decreased obsolescence

Most Significant Barriers

Rank	Barriers
1	Unwillingness to pay additional cost
2	Lack of developer awareness
3	High cost/ low benefit
4	Lack of owner/ occupier awareness
5	Poor access to information
6	Low consumer demand
7	Limited availability to new technology
8	Unreliable/ unproven technology
9	Others

Building Use Vs Design

- 20% said green homes not been used in a way they are designed to be used
- 37% unsure
- **NOTE:**

Despite green design, if a home is not used correctly, then desired outcome of reduced carbon emissions from buildings will be thwarted!

Householder survey to find out behaviour & motivations

2. Results: Householders

Motivation to reduce personal climate change emissions: 49% moderately motivated 32% highly motivated Household size: 43.5% have 2 persons 20% have 3 persons National average: 2.6 persons/ household This trend to smaller household sizes & larger homes presents a barrier to reducing impacts on the environment

Likelihood of adopting no/low cost behaviours that reduce GHG emissions

Actions	Already	Likely/Highl	Unlikely
	doing	y likely	to adopt
Turn off all my appliances at the wall	40%	30%	23%
Insulate hot water pipes	40%	21%	19%
Avoid halogen down-lights or replace	44%	29%	7.4%
with LED/compact fluorescent globes			
Turn lights off when not in the room	89.4%	8%	1%
Use a warmer blanket while sleeping	88%	8.3%	1%
rather than warming the whole room			
Dress appropriately rather than	86%	12%	1%
cooling/warming the whole room			
Replace 10 of the most used light bulbs	58%	31.4%	5%
with LED or CFLs			
Use the washing machine or dishwasher	82.4%	12%	3.5%
only when full			
Dry clothes on a clothesline rather than in	85%	10.6%	1%
an electric clothes dryer			
Install timers on appliances to turn them	10.6%	16.5%	38%
off when not in use			17

No/Low Cost Actions

The actions they were most likely to take:

- Replacing most used light bulbs with LED or CFLs
- Turning off all appliances at the wall
- Avoiding halogen down-lights

The actions they were least likely to take:

- Installing timers on appliances to turn them off when not in use
- Insulating hot water pipes

Reasons for not taking action:

- Inconvenience
- Forgot
- Too lazy

Likelihood of adopting low/medium cost behaviours

Actions	Already	Likely/Highly	Unlikely
	doing	likely	to adopt
Have an energy audit/ assessment	13%	11%	48%
completed on my home			
Install ceiling fans to reduce use of	51%	8%	31%
or need for air conditioning			
Install a 1kW or larger PV system	12%	11%	57%
on the roof			
Install a 5 Star instant gas; heat	38%	13%	32%
pump; or solar hot water heater			
Install or top up insulation in	63%	18%	11%
ceilings			
Replace single flush toilet with	82%	11%	5%
water-saving dual system			
Externally shade any exposed	62%	13%	11%
western or eastern windows			
Install double glazing to windows	2%	5%	69%
Switch household power supply to	11%	18%	53%
"Green Power" (100% renewable			
energy)			
Install a "Smart Meter"	10%	13%	53 % ¹⁹

Low/medium Cost Actions

The most common actions already taken:
 Replacing single flush toilet with dual flush
 Installing or topping-up ceiling insulation
 Externally Shading exposed West or East windows

N.B.

42% of heat escapes through the roof » Installing insulation is one of the <u>more costeffective ways</u> of reducing energy consumption

But: uptake of insulation rebates slow

Low/medium Cost Actions

The actions they were least likely to take:
Installing double glazing
Installing a photovoltaic system
Switching to "Green Power"
Installing a smart meter

Reasons for not taking action:
Cost was the major reason not to act

Benefits & motivations for acting

- 1. Cost savings > \$1000 p.a. were considered the most important
 - 2. "Doing the right thing"
 - 3. Achieving healthy indoor air quality
 - 4. Increased property value
 - 5. Decreased obsolescence

3. Results: Real estate agents

Motivation to reduce personal climate change emissions:

78% moderately or highly motivated

Agents role to inform buyers/sellers: > 50% of agents <u>are not convinced</u> that it is their role to inform buyers/sellers about sustainable house design

This attitude changed: in a follow-up phone survey after education workshop:
 > 50% of the agents *now felt that it is their role* to inform buyers/renters about sustainable house design

Features that contribute to sustainability in homes

Features	Yes	No
Good insulation	100% (9)	0
Large eves	100% (9)	0
A low flow showerhead	100% (9)	0
Access to public	100% (9)	0
transport		
A modern air-conditioner	89% (8)	11% (1)
Low voltage down-lights	44% (4)	56% (5)
West facing windows	22% (2)	78% (7 <u>)</u>
Plenty of lawn area	22% (2)	78% (7)

Willingness to Pay for GreenCost PremiumValid Percent (%)Pay No More111-5% more33.56-10% more2211-15% more33

Benefits of Green Buildings

Rank	Financial and Non-Financial Benefit
1	Cost savings e.g. >\$1000p.a.+
2	Increased property value
2	"Doing the right thing"
2	Healthy indoor air quality
3	Decreased obsolescence

Most Significant Barriers

Rank	Barriers
1	Lack of developer awareness
2	High cost Vs low perceived benefit
3	Unwillingness to pay additional cost
4	Lack of owner/occupier awareness
5	Poor access to information
6	Unreliable/unproven technology
7	Limited availability to new technology
8	Low consumer demand
9	Perceived detriment to aesthetics

Summary & Conclusions

- All three stakeholder groups were consistent in their responses
- Barriers to energy efficiency in homes are:
 - Larger homes & smaller households
 - Costs & long payback periods of sustainable features
 - Lack of developer & RE agent awareness

Summary & Conclusions

- Barriers to energy efficiency cont:
 - Lack of consumer information about benefits & savings of EE features
 - Green buildings not used in a way that maximizes the energy, as designed
- Common reasons people are not acting in more sustainable ways:
 - Forgot
 - Inconvenient
 - Laziness

Recommendations

To substantially reduce CO2 emissions from the building sector, the right mix is needed of:

- Appropriate government regulation
- Greater use of energy saving technologies
- Behavioural change