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Abstract 

This paper illustrates the power of Genetic programming (GP) with a variety of simple examples. 
The general approach is described and the results are compared to regressions and Artificial 
Neural Network results. The superiority of GP results appears to be quite convincing. Less 
convincing could be the nature of the Darwinian metaphor that underpin the whole concept.  
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This paper is meant to introduce Genetic programming in simple terms, to illustrate the process 
with simple (and less simple) examples and then to warn against the temptation to take the 
Darwinian Evolutionary metaphor beyond what Genetic Programming actually does.  

Since most of us don’t really speak Greek it could be safe to define our terms. 

⎯ Teleology (Greek telos = end; logos = discourse) is the research of finality. In philosophy, 
it is based on the Aristotelian idea that the universe has a design and purpose. It can be 
opposed by Darwin’s ‘telosless’ random-evolution  of the natural world..  

⎯ Heuritic (from the Greek `heuriskein’: to discover) is the research of results by trial and 
error.  

1. Genetic programming 

Genetic programming (GP) introduced by John Holland (1975)1, is now commonly used in design 
problems where no ‘optimal’ and unique solution can be found by deterministic modelling. Thus, 
GP is  commonly is used in electronic design, in engineering, biomedical sciences and applied 
mathematics.  

More recently, as expected, it has also been discovered and applied to solve analytical and 
decision making issues in areas such as finance, marketing, behavioural economics or operation 
research. Predictably, a recent research (from the US, where else? ) even applied GP to deal 
with cyberterrorism intrusion (Hansen, Lowry et al. 2007). Some of the relevant references limited 
to the areas of economics, finance and operation research are listed in references. 

Genetic programming works particularly well with financial types of problems and decision driven 
issues because:  

⎯ They are payoff driven. The targets are measurable (in dollars, time, customer base, 
degree of satisfaction, etc.)..  

⎯ They are quantitative, and well-suited to parameter optimisation; 

                                                      
1 For a review of J. Holland role on the field of economics, see Chen, S (2001)  
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⎯ They are robust, allowing a large margin of freedom that is not acceptable for 
econometric methods. In particular GP calculations do not have to be constrained by any 
of the traditional Gaussian Markov Ten Commandments in econometrics. 

So far, the GP approach has received little attention in the various property fields. The only 
references traced so far are a test of efficient markets based on long term series of price data for 
a quoted property investment company (Fyfe, Marney J. et al. 1999) and a study of residential 
submarkets (Lewis, Ware et al. 2001). It may be worth noting that  these papers were not 
published in `property journals’.  

Genetic progamming relies entirely - in general and in some of it’s operational details – on the 
metaphor of Darwinian evolution. From extremely simple kernels of calculations, GP produces 
increasingly complex functions (made of small bits of code) that will eventually reach a pre-
determined target. In a way, this approach was already germane in the innovative Adaptative 
Estimation Procedure that was applied to property valuation (Carbone and Longini 1977) but here 
the nature of ‘adaptative procedure’ is radically different. 

In the words of the best know GP evangelist (Koza, 1992): 

We breed the population of computer programs using the Darwinian principal of survival 
and reproduction of the fittest and the genetic operation of recombination (cross-over). 
Both reproduction and recombination are applied to computer programs selected from 
the population in proportion to their observed fitness in solving the problem. Over a 
period of many generations, we breed computer programs that are ever more fit to solve 
the problem at hand (Koza, 1992 p.4) 

2. The genetic analogy: from genes to strings of  bits. 

In nature, the mixing of genetic material proceeds through an equal exchange (half from her and 
half from him) of genes through the twisting around of the chains of DNA and associated proteins 
(chromosomes). This process of recombination is – usually – flawless except of course in the 
case of rare mutations that can lead to a new phenotype and thus to some evolutionary 
branching. 

In genetic programming the ‘twisting and fusing of chromosomes’ is the metaphor for the 
recombination of strings (binary string bits) of assembler code such as.  

10010101110101001010011101101110111111101 

A large number of such ‘models’ (binary strings) are used to calculate some outcome (the target). 
As you may guess, it is very unlikely that any of them will lead to the right answer, but some of 
them may fit better than others. Each model receives a ‘fitness score’ and  the best scorers are 
randomly selected, intermixed (0 and 1 from each.. not necessarily in equal numbers) and 
rescored again. Like in real sexual reproduction, each ‘descendant; thus is endowed with 
chromosomes (data string) of each ‘parent’.  

The best scorers will have a higher probability of being combined in the following cross over 
(selection of random ‘genes’ ie: 0 and 1 from the model. 

For example, from the two strings below:  

10001001110010010  

01010001001000011 

The computer will, at random, choose a bit the length, say at position 9, and swap all the bits after 
that point. Now the descendant will be look like: 

10001001101000011 

01010001010010010 



In a first term of a ‘model’ that comes out as:  (v[0] - 0.5)  (see the full formula later on in 4) and 
using four-bit code to represent the variable and operators2 characters these first two terms 
would be coded coded as: 

                                                     

00011011010111010010 

Most readers (and certainly not this author) would not have the patience to push the example 
much further, but the general idea should make more sense now.  

3. How to make it run in practice. 

To run a GP model, you need to load a ‘training’ matrix and a ‘validation matrix’. Both sets of data 
should come from the same population and have the same variables. Typically, you could divide 
your population in two subsets (chosen randomly) and use the two sets for training and validation 
purpose. The targets (the model results) are known and you could select your input variables on 
the basis of prior theoretical or empirical knowledge of the relationships. You could even cheat 
(as I did here) by running some regressions or Artificial Neural Network test to make sure that the 
chosen variables are relevant.  

You have various options to control on the process. Interestingly these options are laid out in a 
very evocative ‘natural selection language (choice of cross-over rates, mutation frequencies, 
number of demes3, cross-over between demes, migration rates among demes). 

Then, you let the model run and you monitor the progress by observing the graphical ‘searching 
process’ (as illustrated later on) and by following the spreadsheet presentation of the results.  

The stopping rules can be determined in the program set up, but typically you would stop the run 
when you fitness levels (proximity between target, validation and calculated results) is 
satisfactory.  

⎯ In function fitting problems, the program calculates the square of the residuals between 
targets and results. The user may choose to stop when this measurement is not 
improving.  

⎯ For classification problems, it calculates a percentage of hit-and-miss outcomes. Here 
again, the user may stop when the rate is good enough. In the example presented below, 
the hit rate was close to 96% in a few seconds of running time. 

Finally, when finished, you can visualise the resulting graph and spreadsheets, you can compare 
the different results for the training and the validation sets and you may want to keep your best 
performer. 

The other important output is a full sub-program written in Assembler or in C++ (the ‘professional’ 
version of this package also offers a Java option). This sub-program can then be integrated to a 
complete program that could manage the treatment of input and presentation of outputs. It can 
also be linked to other programs to contribute to the solution of more complex procedures. 
Unfortunately, in this version of the package, the results are not turned into an Excel or SPSS 
equivalent type of interface. Thus, it does require a sufficient knowledge of C++ to exploit the 
output to its full extent. 

 
2  0:         0000, 1:         0001; 2:         0010; 3:         0011; 4:         0100; 5:         0101; 6:         0110; 7:         0111; 8:         
1000; 9:         1001; +:         1010; -:          1011; *:          1100; /:          1101 

 
3  Demes are geographically separated populations. In nature, the separation of the species 
contributes to more genetic diversity. The migration rates between demes determines the amount 
of blending and crossovers. The program offers the options of choosing the number of demes 
and the rates of migration betweem demes. This feature seems to improve the production of a 
larger variety of models (strings of bits). 



4. A simplistic example: land price and lot size 

The trivial  – and typical first example in any basic regression course  - is used here to determine 
the influence of lot size and distance from CBD  on lot prices.  

Price = f (lot size). 

The model generates a ‘program’ in C++ that can be translated in ‘almost’ English as: 
((v[0] - 0.5) + v[0]) + ((v[0] - 0.5) + v[0])) + v[0]) / 0.5) + (fabs(((0 * v[0]) + 0.5)) / (((v[0] - 0.5) + 
v[0]) + ((v[0] - 0.5) + v[0])))) - 0.5); 

Thus, we can see that the ‘genetic’ transformations are here limited to subtraction and division by 
a constant (0.5), and nothing else. Predictably, the results are right on the spot (it is a straight 
line), however why bother? We did not need such a heavy machinery to reach this result: a pencil 
and cheap plastic ruler would have done the job quite nicely. 

Even more complex land pricing models  do no really require such a fancy GP treatment (Fischer 
and Lai Pi-Ying 2007). As shown in the quoted paper, a multiple regression treatment is almost 
good enough. The results obtained from Artificial Neural Network treatments are indeed better 
than regression procedures, and very close to those obtained from GP. However, ANN 
treatments are more explicit and easier to apply to predictive models. So, once more, why 
bother? 

5. Mimicking a hedonic model…  with one variable only. 

Why bother?... because GP is not meant to be used to find easy deterministic solutions. GP is 
mostly useful to deal with problems that do not have a ‘calculable’ outcome, or to problems that 
do not rely on a clear explanatory model, or on treatments that cannot rely on a sufficient number 
of variables to explain the outcome.  

To keep our comparisons ‘comparable’ we will now use a house pricing example based on 
observed prices (1999 – Perth, Western Australia). The sample is limited to duplex types of 
housing and we had to scale the prices by a factor of 10 000 to make the program work. 

Here we try to predict the price of Duplex units on the basis of only one variable (Duplex surface). 
Thus, we drop all the other available traditional ‘hedonic’ variables (distance from CBD, 
construction type, roof, number of rooms, number of bath, garage, etc). 

After a mere 10 seconds running time the ‘running graph’ looks like the following illustration.  
Figure 1: Duplex house price calculated from the house surface only: the output after  10 seconds 

 
In this case, the run could have been stopped after 1 minute since the gain in precision was 
negligible. However, as usual when playing with a new toy, the temptation is to let it run as long 



as you feel like. Here, after 5 minutes the results come with a surprising accuracy (see the output 
in appendix 1). 

The average difference between observed prices and model generated prices is -980 $ and the 
standard deviation of the ‘residuals’ is 8 905 $ (to compare with average prices of 183 372 $ 

Running a regression on the same information leads to a coefficient of determination of only 15% 
and a standard error on residuals of  94 835 $. No contest indeed! 

Further – it may worth repeating again – the Genetic Programming model requires absolutely no 
hypothesis on the shape of the model or the statistical nature of the variables. 

Could we obtain better results with a run of Artificial Neural Network? The answer must be 
negative. The ANN treatment is far from producing results of the same accuracy. 
 
Figure 2: ANN result on the one-variable ‘hedonic model’ 

 
Table 1: ANN performance on the Duplex price-size calculation. Not great! 

  Training set Test set 
# of rows: 96 20 

Average AE: 4.2461876 8.451561 
Average MSE: 66.270296 220.60129 

Tolerance: 10% 30% 
# of Good forecasts: 26 (27%) 14 (70%) 
# of Bad forecasts: 70 (73%) 6 (30%) 

 

6. A classification problem 

The previous examples (land price predictions) are problems similar -  in their structure and 
objectives - to multiple regression analysis: a set of input variables are used to determine the 
values of a numerical dependent variable (target variable).  

GP can also be applied to problems, where the outcome is a hit or miss result. Such problems 
could also be treated with regression analysis (with a dummy dependent variable), or better with 
a logit model. The treatment of mortgage default is a good example of such problem, where 



underwriting criteria are used as input variables to predict a default outcome coded as  0 (no 
default) or 1 (default).  

The procedure is now briefly illustrated in the case of a – very clearly – contrived example (see 
the data set in appendix 2). The underwriting criteria chosen here are the usual suspects: 
household income, length of residence, ‘sin level’ (credit rating impediments), % of equity and 
house value.  

The Genetic programming package used here has different stopping rules for classification 
problems and essentially – you can manually stop it whenever the hit rates are satisfactory. In our 
case, the hit rate was up to 95.9% on both the training and validation test within less than a 
minute and the intermediate output graph (after 12 seconds) is presented below in Figure 3 
 Figure 3: The Mortgage default model after 12 seconds. 

 
In contrast, the Artificial Neural Network model did not perform well at all with this type of 
classification problem.The summary of the ANN output is presented in Table 2 
Table 2: The mortgage default ANN output. 

  Training set Test set 

# of rows: 41 8 

Average AE: 0.0809943 0.28308077 

Average MSE: 0.0344385 0.19441146 

Tolerance: 10% 30% 

# of Good 
forecasts: 14 (34%) 0 (0%) 

# of Bad 
forecasts: 27 (66%) 8 (100%) 

 

From these two simple illustrations we can conclude that Genetic programming works. Even in 
the very naïve hands of a first time experimenter using the cheap version of a commercial 
package.  

Of course, as with Artificial Neural Network, the model is a very much a black box, but – in view of 
the power of the tool – this `black boxness’ can easily be tolerated. It should also be said that – 
for many ‘down town’ users, multiple regression software packages are – at least – as obscure 
and impenetrable: this does not seem to prevent the widespread usage of regression results.   



Having established the usefulness of the instrument and – after this maiden flight – hoping to use 
it more in the future, I would like to briefly discuss the nature and limitation of the Darwinian 
metaphor and thus – at last -  clarify the meaning of this paper’s title. 

7. Let’s beware of metaphors 

Genetic programming borrows its name and metaphor from the domain of biology  in the same 
way as, previously, artificial neural network borrowed its own metaphor from neurology and 
medical sciences.  

This reverential support from the ‘real sciences’ is quite typical of the epistemological bias that 
has burdened the development of economics and other social sciences. However in GP, the 
borrowing was not initiated by economics or social sciences but by other ‘real sciences’ such as 
computer sciences and operation research. Still, we suggest that the analogies to the natural 
world are used – to a certain extent – as a ‘blinding by science’4 argument: this reverential 
reference to biology has the effect of making the argument more authoritative. In other words the 
reference to fundamental natural and biological processes confers nobility and credibility to the 
esoteric and non-intuitive machinery behind the algorithms.  

This recourse to the biological metaphor is particularly interesting in the case of artificial neural 
network. Nowadays, most  introductory presentations of artificial Neural Network applications rely 
on nifty Power Point pictures of the brain with neurons and synapses (preferably in colour)  
actively engaged in smart connectivity. Unfortunately, this picturesque description of artificial 
neural network is far too reductionist. ANN algorithms are much (much, much) simpler than real 
biological brains neural functioning.  

ANN simply proceeds through searching algorithms that filter out the non-performing branching of 
quasi-random calculations. The fact that the screening may go through many levels does not 
change the nature of the process and certainly does not make more ‘like a real brain’. ANN is 
nothing more that a streamlined heuristic procedure. The efficiency and performance of ANN  is 
indeed quite impressive, but the over-analogizing it to biological brain chemistry by many of its 
proponents is borderline false representation.  

In a sense, Genetic programming suffers from the same ‘over-analogising’. However, at least to a 
certain point, the analogy has more pedagogical power than the analogy used in ANN. As we 
have seen, the borrowed language and concepts are quite useful similes that do facilitate the 
understanding and probably the development of the GP instruments. Still, the metaphor is only a 
metaphor and it should not be pushed beyond its pedagogical function. GP algorithms and real 
natural selection are quite different: some of the differences are obvious, some of them are more 
subtle.  

⎯ Incomparable time scales 

One of the obvious difference is the vast difference in time scale. Natural selection spreads out in 
the past and in the future over an unknown billions of years. The real biological computer runs for 
a very very long period and it runs very very slowly. The rate of mutation is slow (e.g. for Homo 
sapiens, significant mutations seem to occur only every 10 000 years) but still, over the eons the 
number of steps taken by the ‘algorithm’ is immensely larger than the one taken by the most 
powerful computer programs. In fact, commercial software providers sell their products on the 
basis of their extreme speed. The package used for the purpose of this paper runs ‘only’ a few 
millions  ‘tournaments’ for the land pricing example in less than 30 minutes on a notoriously 
sluggish PC and Intel based system.  

⎯ Natural selection is extremely wasteful 

                                                      
4 Expression borrowed from R. Dawkins (2002). 



Once again, the numbers are intelligible, but an unknown and prodigiously high number of 
evolutionary attempts are wasted in the natural selection process. Zillions of  variants and species 
just do not make it.  

In contrast, GP algorithms try their best to minimise the wastage by imposing elimination rules on 
the less performing models. Thus, a ruthless screening of the losers has the advantage of 
producing a smaller number of ‘losing’ descendants. Cutting the evolution branch as early as 
feasible has the beneficial effect of reducing the wastage and – more to the point – of reducing 
memory requirements and computer running time. 

⎯ Natural selection has no teleogy 

This point may be less obvious and certainly less palatable to Theists. Natural selection has no 
final overreaching objective. It certainly does not try to reach some form of ideal survivor. Natural 
selection occurs in perpetuity without any ‘target’. The engine of the process is not its finality but 
only the fundamental genes reproductive necessity.  

The observable present result of evolution (a few millions species and one specie that can even 
count the others) is extremely transitory and subject to constant transformations. No specie will 
survive for very long and certainly no specie can be considered as ‘closer to the target’. Evolution 
churns along multitude of variants that adapt to the changing environments, the variants are short 
lived (relatively speaking) because the environments are changing fast (again, relatively 
speaking).  

By contrast - and this is the point made in the title of this essay – GP algorithm have very specific 
targets: it has a ‘teleos’. Genetic algorithms have the declared objective to find the ‘fittest’ the 
model that will track the target as close as possible. The targets are defined narrowly (a vector of 
numbers) and the algorithm is ‘trained’ to get results that are the best approximation of the results 
observed in the validation matrix. The process is not normative: it does not try to find some 
‘optimal solution’ (optimal?.. with respect to which criteria?). It is a pure heuristic: it tries, fails, 
tries again and eventually gets close enough to stop.  

Once again, the GP Darwinian metaphor is useful but it is only a metaphor. Our ingrained  
scientific scepticism should keep us vigilant enough not to turn our biological metaphors into 
allegories. No one but Deidre Mc Closkey could put it better: 

When the metaphors do battle with the story, the result is nonsense, nonsense that can 
hurt when people believe it. People do. People especially believe in allegories, such  as 
the combined metaphors and stories of economics, because an allegory in its 
completeness protects the illusion of prediction and control. (McCloskey 1992) (p. 97) 

 

 

 

 

 

 





Appendix 1 
 

Table 3 The ‘one-variable’ Duplex pricing GP best run. 

 

  
Duplex surface 

in m2 
Observed prices in 

AUD (rounded) 

Prices predicted by the 
best GP run (5 

minutes running time) 

Difference (in 
AUD) 

 78 48,100 44,855 3,245 
 91 56,300 62,820 -6,520 
 56 61,700 67,297 -5,597 
 82 62,000 62,777 -777 
 221 67,000 78,425 -11,425 
 78 70,100 84,855 -14,755 
 70 76,800 83,464 -6,664 
 55 87,100 82,949 4,151 
 82 87,200 82,777 4,423 
 73 89,200 86,055 3,145 
 115 94,500 91,327 3,173 
 82 104,300 122,777 -18,477 
 76 108,600 107,154 1,446 
 71 109,400 128,418 -19,018 
 82 114,900 122,777 -7,877 
 79 115,100 125,771 -10,671 
 93 117,100 138,252 -21,152 
 82 117,900 122,777 -4,877 
 83 119,200 118,787 413 
 105 122,000 122,125 -125 
 73 122,200 116,055 6,145 
 86 123,500 136,991 -13,491 
 80 126,000 134,735 -8,735 
 76 126,300 127,154 -854 
 80 127,700 134,735 -7,035 
 80 128,100 134,735 -6,635 
 80 130,600 134,735 -4,135 
 90 132,200 144,765 -12,565 
 82 133,500 130,777 2,723 
 85 133,600 141,056 -7,456 
 99 134,500 136,419 -1,919 
 98 134,600 154,812 -20,212 
 136 134,800 135,758 -958 
 140 135,600 139,267 -3,667 
 84 135,700 139,919 -4,219 
 75 136,900 139,120 -2,220 
 87 137,100 135,731 1,369 
 76 137,800 137,154 646 
 84 137,800 139,919 -2,119 
 91 140,200 142,820 -2,620 
 118 140,800 143,783 -2,983 
 88 142,600 145,824 -3,224 
 83 143,300 148,787 -5,487 
 113 145,500 155,524 -10,024 
 63 146,300 140,076 6,224 
 80 147,300 148,275 -975 
 92 147,400 150,371 -2,971 
 56 151,300 157,297 -5,997 
 75 151,800 149,120 2,680 
 80 153,800 134,735 19,065 
 79 155,900 135,771 20,129 



 76 156,100 157,154 -1,054 
 75 159,500 159,120 380 
 132 160,200 171,359 -11,159 
 84 161,400 159,919 1,481 
 83 163,100 148,787 14,313 
 84 164,200 159,919 4,281 
 83 165,300 148,787 16,513 
 94 166,200 169,383 -3,183 
 72 167,300 167,121 179 
 79 172,500 175,771 -3,271 
 74 176,700 172,379 4,321 
 130 177,500 182,996 -5,496 
 74 177,900 167,356 10,544 
 77 178,100 189,331 -11,231 
 75 178,500 179,120 -620 
 75 178,700 179,120 -420 
 127 179,000 178,701 299 
 85 180,200 181,056 -856 
 76 181,200 187,154 -5,954 
 56 182,200 187,297 -5,097 
 144 182,800 196,557 -13,757 
 87 182,900 175,731 7,169 
 82 184,000 182,777 1,223 
 73 185,200 186,055 -855 
 149 187,700 186,105 1,595 
 76 188,200 197,154 -8,954 
 145 189,200 199,588 -10,388 
 70 189,600 183,464 6,136 
 137 191,800 192,728 -928 
 85 197,200 185,056 12,144 
 85 197,500 181,056 16,444 
 110 202,900 203,959 -1,059 
 94 203,900 209,383 -5,483 
 83 209,600 208,787 813 
 78 211,400 214,855 -3,455 
 205 213,200 227,646 -14,446 
 119 215,600 204,347 11,253 
 132 220,300 221,359 -1,059 
 98 222,700 214,812 7,888 
 138 225,000 223,590 1,410 
 167 226,000 237,484 -11,484 
 104 226,800 224,636 2,164 
 82 227,000 222,777 4,223 
 132 228,500 222,359 6,141 
 160 230,100 238,186 -8,086 
 123 234,600 232,540 2,060 
 144 236,300 226,557 9,743 
 158 237,600 209,039 28,561 
 114 244,900 240,442 4,458 
 172 252,700 265,746 -13,046 
 161 255,100 251,862 3,238 
 160 255,400 248,186 7,214 
 146 255,800 266,824 -11,024 
 140 261,400 279,267 -17,867 
 146 261,700 266,824 -5,124 
 128 263,100 268,973 -5,873 
 142 275,100 266,726 8,374 
 146 276,900 266,824 10,076 
 187 288,600 273,886 14,714 
 170 309,800 308,620 1,180 
 180 319,900 304,742 15,158 



 76 362,700 367,154 -4,454 
 76 406,300 407,154 -854 
 140 779,300 769,267 10,033 
  140 825,900 819,267 6,633 
mean 102.2241379 183,372 184,352 -980 
standard deviation       8,805 





Appendix 2 
The one variable duplex pricing: Regression results 

       
Regression Statistics     

Multiple R 0.397024802     
R Square 0.157628693     
Adjusted R Square 0.150239471     
Standard Error 9.545342466     
Observations 116     
       
ANOVA      

  df SS MS F 
Regression 1 1943.656834 1943.656834 21.33224489 
Residual 114 10386.94616 91.11356279   
Total 115 12330.60299     

       
  Coefficients Standard Error t Stat P-value 

Intercept 5.718222622 2.763491593 2.069202105 0.040787685 
AREA_HSE 0.118264731 0.025605718 4.618684324 1.02162E-05 

Observation 
 

Predicted   
Residuals    

1 24.75884425 0.491155746    
2 17.42643095 -4.626430955    
3 15.77072473 3.529275274    
4 14.46981269 2.530187311    
5 15.41593053 -2.165930534    
6 16.00725419 -3.207254187    
7 19.79172557 0.908274433    
8 12.34104754 5.258952463    
9 22.51181437 4.488185628    

10 14.94287161 -10.74287161    
11 15.77072473 -3.120724726    
12 31.85472809 -26.05472809    
13 14.46981269 2.330187311    
14 14.70634215 0.61865785    
15 22.74834383 0.451656167    
16 19.31866664 -10.81866664    
17 21.32916707 -5.529167066    
18 15.77072473 3.329275274    
19 15.41593053 -4.415930534    
20 13.99675377 -7.296753766    
21 22.98487329 2.515126705    
22 19.08213718 -4.582137184    
23 15.77072473 1.479275274    
24 16.59857784 -2.09857784    
25 26.05975629 -1.259756291    
26 25.46843264 -2.968432638    
27 15.17940107 -2.879401073    
28 15.41593053 2.984069466    
29 19.67346084 -6.473460837    
30 15.06113634 -3.911136342    
31 22.27528491 -8.825284911    
32 27.83372725 0.166272749    
33 15.65246 -0.252459995    
34 15.41593053 -9.415930534    
35 17.30816622 4.191833776    
36 16.48031311 -11.28031311    

Prices in 10 000 $  



37 14.23328323 1.866716773    
38 22.74834383 -4.748343833    
39 14.35154796 -2.951547958    
40 12.34104754 2.158952463    
41 14.35154796 3.848452042    
42 14.35154796 -6.051547958    
43 29.9624924 -8.962492402    
44 22.27528491 3.724715089    
45 15.06113634 -0.361136342    
46 15.53419526 -2.134195264    
47 15.53419526 0.465804736    
48 15.17940107 -2.679401073    
49 15.65246 -2.952459995    
50 15.53419526 -0.134195264    
51 16.12551892 -1.925518918    
52 22.98487329 3.015126705    
53 24.64057952 -2.440579524    
54 24.40405006 -1.404050062    
55 16.8351073 3.164892699    
56 16.71684257 -5.916842571    
57 15.17940107 -2.879401073    
58 13.99675377 4.503246234    
59 14.70634215 -4.22634215    
60 15.41593053 -6.925930534    
61 14.70634215 -1.22634215    
62 14.70634215 2.79365785    
63 21.92049072 -3.670490719    
64 17.30816622 -4.508166224    
65 18.72734299 1.272657008    
66 19.20040191 4.799598086    
67 15.88898946 -3.888989456    
68 15.65246 -2.232459995    
69 14.70634215 -2.30634215    
70 14.82460688 2.675393119    
71 14.1150185 -3.615018497    
72 15.17940107 -0.679401073    
73 22.86660856 -4.716608564    
74 15.41593053 -5.115930534    
75 22.27528491 59.72471509    
76 22.27528491 54.72471509    
77 20.73784341 -3.237843413    
78 15.65246 -0.152459995    
79 14.58807742 2.311922581    
80 14.58807742 1.211922581    
81 15.06113634 1.238863658    
82 27.00587414 4.494125864    
83 15.53419526 -4.534195264    
84 14.94287161 5.557128389    
85 14.94287161 -8.742871611    
86 14.58807742 -1.388077419    
87 14.58807742 2.911922581    
88 16.8351073 -0.635107301    
89 15.53419526 4.465804736    
90 18.01775461 3.682245392    
91 20.26478449 2.33521551    
92 23.33966749 -5.339667487    
93 15.41593053 -4.215930534    
94 12.34104754 -6.341047537    
95 16.36204838 -4.062048379    
96 21.32916707 1.470832934    
97 22.98487329 3.815126705    



98 22.03875545 -0.23875545    
99 24.64057952 0.859420476    

100 15.17940107 -2.579401073    
101 13.16890065 1.031099348    
102 21.80222599 -9.250225988    
103 14.58807742 0.561922581    
104 25.82322683 4.92677317    
105 16.48031311 -2.98031311    
106 15.17940107 -0.979401073    
107 12.22278281 -4.272782807    
108 20.85610814 5.143891857    
109 21.0926376 -4.092637604    
110 18.13601934 -5.936019338    
111 16.00725419 1.892745813    
112 21.32916707 0.670832934    
113 14.70634215 3.79365785    
114 15.41593053 6.584069466    
115 14.70634215 25.79365785    
116 14.70634215 20.79365785    

    9.503750362     
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