
EVOLUTION WITH A TELEOLOGY: THE GENETIC PROGRAMMING HEURISTIC APPROACH TO MODELING

Dominique Fischer

Universiti Malaya, Kuala Lumpur

Corresponding author: Prof. Dominique Fischer domfischer@gmail.com

Abstract

This paper illustrates the power of Genetic programming (GP) with a variety of simple examples.
The general approach is described and the results are compared to regressions and Artificial
Neural Network results. The superiority of GP results appears to be quite convincing. Less
convincing could be the nature of the Darwinian metaphor that underpin the whole concept.

Keywords: Genetic programming, heuristic models, metaphors.

This paper is meant to introduce Genetic programming in simple terms, to illustrate the process
with simple (and less simple) examples and then to warn against the temptation to take the
Darwinian Evolutionary metaphor beyond what Genetic Programming actually does.

Since most of us don’t really speak Greek it could be safe to define our terms.

⎯ Teleology (Greek telos = end; logos = discourse) is the research of finality. In philosophy,
it is based on the Aristotelian idea that the universe has a design and purpose. It can be
opposed by Darwin’s ‘telosless’ random-evolution of the natural world..

⎯ Heuritic (from the Greek `heuriskein’: to discover) is the research of results by trial and
error.

1. Genetic programming

Genetic programming (GP) introduced by John Holland (1975)1, is now commonly used in design
problems where no ‘optimal’ and unique solution can be found by deterministic modelling. Thus,
GP is commonly is used in electronic design, in engineering, biomedical sciences and applied
mathematics.

More recently, as expected, it has also been discovered and applied to solve analytical and
decision making issues in areas such as finance, marketing, behavioural economics or operation
research. Predictably, a recent research (from the US, where else?) even applied GP to deal
with cyberterrorism intrusion (Hansen, Lowry et al. 2007). Some of the relevant references limited
to the areas of economics, finance and operation research are listed in references.

Genetic programming works particularly well with financial types of problems and decision driven
issues because:

⎯ They are payoff driven. The targets are measurable (in dollars, time, customer base,
degree of satisfaction, etc.)..

⎯ They are quantitative, and well-suited to parameter optimisation;

1 For a review of J. Holland role on the field of economics, see Chen, S (2001)

mailto:domfischer@gmail.com
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/tcw2/report.html#Fin_App#Fin_App

⎯ They are robust, allowing a large margin of freedom that is not acceptable for
econometric methods. In particular GP calculations do not have to be constrained by any
of the traditional Gaussian Markov Ten Commandments in econometrics.

So far, the GP approach has received little attention in the various property fields. The only
references traced so far are a test of efficient markets based on long term series of price data for
a quoted property investment company (Fyfe, Marney J. et al. 1999) and a study of residential
submarkets (Lewis, Ware et al. 2001). It may be worth noting that these papers were not
published in `property journals’.

Genetic progamming relies entirely - in general and in some of it’s operational details – on the
metaphor of Darwinian evolution. From extremely simple kernels of calculations, GP produces
increasingly complex functions (made of small bits of code) that will eventually reach a pre-
determined target. In a way, this approach was already germane in the innovative Adaptative
Estimation Procedure that was applied to property valuation (Carbone and Longini 1977) but here
the nature of ‘adaptative procedure’ is radically different.

In the words of the best know GP evangelist (Koza, 1992):

We breed the population of computer programs using the Darwinian principal of survival
and reproduction of the fittest and the genetic operation of recombination (cross-over).
Both reproduction and recombination are applied to computer programs selected from
the population in proportion to their observed fitness in solving the problem. Over a
period of many generations, we breed computer programs that are ever more fit to solve
the problem at hand (Koza, 1992 p.4)

2. The genetic analogy: from genes to strings of bits.

In nature, the mixing of genetic material proceeds through an equal exchange (half from her and
half from him) of genes through the twisting around of the chains of DNA and associated proteins
(chromosomes). This process of recombination is – usually – flawless except of course in the
case of rare mutations that can lead to a new phenotype and thus to some evolutionary
branching.

In genetic programming the ‘twisting and fusing of chromosomes’ is the metaphor for the
recombination of strings (binary string bits) of assembler code such as.

10010101110101001010011101101110111111101

A large number of such ‘models’ (binary strings) are used to calculate some outcome (the target).
As you may guess, it is very unlikely that any of them will lead to the right answer, but some of
them may fit better than others. Each model receives a ‘fitness score’ and the best scorers are
randomly selected, intermixed (0 and 1 from each.. not necessarily in equal numbers) and
rescored again. Like in real sexual reproduction, each ‘descendant; thus is endowed with
chromosomes (data string) of each ‘parent’.

The best scorers will have a higher probability of being combined in the following cross over
(selection of random ‘genes’ ie: 0 and 1 from the model.

For example, from the two strings below:

10001001110010010

01010001001000011

The computer will, at random, choose a bit the length, say at position 9, and swap all the bits after
that point. Now the descendant will be look like:

10001001101000011

01010001010010010

In a first term of a ‘model’ that comes out as: (v[0] - 0.5) (see the full formula later on in 4) and
using four-bit code to represent the variable and operators2 characters these first two terms
would be coded coded as:

00011011010111010010

Most readers (and certainly not this author) would not have the patience to push the example
much further, but the general idea should make more sense now.

3. How to make it run in practice.

To run a GP model, you need to load a ‘training’ matrix and a ‘validation matrix’. Both sets of data
should come from the same population and have the same variables. Typically, you could divide
your population in two subsets (chosen randomly) and use the two sets for training and validation
purpose. The targets (the model results) are known and you could select your input variables on
the basis of prior theoretical or empirical knowledge of the relationships. You could even cheat
(as I did here) by running some regressions or Artificial Neural Network test to make sure that the
chosen variables are relevant.

You have various options to control on the process. Interestingly these options are laid out in a
very evocative ‘natural selection language (choice of cross-over rates, mutation frequencies,
number of demes3, cross-over between demes, migration rates among demes).

Then, you let the model run and you monitor the progress by observing the graphical ‘searching
process’ (as illustrated later on) and by following the spreadsheet presentation of the results.

The stopping rules can be determined in the program set up, but typically you would stop the run
when you fitness levels (proximity between target, validation and calculated results) is
satisfactory.

⎯ In function fitting problems, the program calculates the square of the residuals between
targets and results. The user may choose to stop when this measurement is not
improving.

⎯ For classification problems, it calculates a percentage of hit-and-miss outcomes. Here
again, the user may stop when the rate is good enough. In the example presented below,
the hit rate was close to 96% in a few seconds of running time.

Finally, when finished, you can visualise the resulting graph and spreadsheets, you can compare
the different results for the training and the validation sets and you may want to keep your best
performer.

The other important output is a full sub-program written in Assembler or in C++ (the ‘professional’
version of this package also offers a Java option). This sub-program can then be integrated to a
complete program that could manage the treatment of input and presentation of outputs. It can
also be linked to other programs to contribute to the solution of more complex procedures.
Unfortunately, in this version of the package, the results are not turned into an Excel or SPSS
equivalent type of interface. Thus, it does require a sufficient knowledge of C++ to exploit the
output to its full extent.

2 0: 0000, 1: 0001; 2: 0010; 3: 0011; 4: 0100; 5: 0101; 6: 0110; 7: 0111; 8:
1000; 9: 1001; +: 1010; -: 1011; *: 1100; /: 1101

3 Demes are geographically separated populations. In nature, the separation of the species
contributes to more genetic diversity. The migration rates between demes determines the amount
of blending and crossovers. The program offers the options of choosing the number of demes
and the rates of migration betweem demes. This feature seems to improve the production of a
larger variety of models (strings of bits).

4. A simplistic example: land price and lot size

The trivial – and typical first example in any basic regression course - is used here to determine
the influence of lot size and distance from CBD on lot prices.

Price = f (lot size).

The model generates a ‘program’ in C++ that can be translated in ‘almost’ English as:
((v[0] - 0.5) + v[0]) + ((v[0] - 0.5) + v[0])) + v[0]) / 0.5) + (fabs(((0 * v[0]) + 0.5)) / (((v[0] - 0.5) +
v[0]) + ((v[0] - 0.5) + v[0])))) - 0.5);

Thus, we can see that the ‘genetic’ transformations are here limited to subtraction and division by
a constant (0.5), and nothing else. Predictably, the results are right on the spot (it is a straight
line), however why bother? We did not need such a heavy machinery to reach this result: a pencil
and cheap plastic ruler would have done the job quite nicely.

Even more complex land pricing models do no really require such a fancy GP treatment (Fischer
and Lai Pi-Ying 2007). As shown in the quoted paper, a multiple regression treatment is almost
good enough. The results obtained from Artificial Neural Network treatments are indeed better
than regression procedures, and very close to those obtained from GP. However, ANN
treatments are more explicit and easier to apply to predictive models. So, once more, why
bother?

5. Mimicking a hedonic model… with one variable only.

Why bother?... because GP is not meant to be used to find easy deterministic solutions. GP is
mostly useful to deal with problems that do not have a ‘calculable’ outcome, or to problems that
do not rely on a clear explanatory model, or on treatments that cannot rely on a sufficient number
of variables to explain the outcome.

To keep our comparisons ‘comparable’ we will now use a house pricing example based on
observed prices (1999 – Perth, Western Australia). The sample is limited to duplex types of
housing and we had to scale the prices by a factor of 10 000 to make the program work.

Here we try to predict the price of Duplex units on the basis of only one variable (Duplex surface).
Thus, we drop all the other available traditional ‘hedonic’ variables (distance from CBD,
construction type, roof, number of rooms, number of bath, garage, etc).

After a mere 10 seconds running time the ‘running graph’ looks like the following illustration.
Figure 1: Duplex house price calculated from the house surface only: the output after 10 seconds

In this case, the run could have been stopped after 1 minute since the gain in precision was
negligible. However, as usual when playing with a new toy, the temptation is to let it run as long

as you feel like. Here, after 5 minutes the results come with a surprising accuracy (see the output
in appendix 1).

The average difference between observed prices and model generated prices is -980 $ and the
standard deviation of the ‘residuals’ is 8 905 $ (to compare with average prices of 183 372 $

Running a regression on the same information leads to a coefficient of determination of only 15%
and a standard error on residuals of 94 835 $. No contest indeed!

Further – it may worth repeating again – the Genetic Programming model requires absolutely no
hypothesis on the shape of the model or the statistical nature of the variables.

Could we obtain better results with a run of Artificial Neural Network? The answer must be
negative. The ANN treatment is far from producing results of the same accuracy.

Figure 2: ANN result on the one-variable ‘hedonic model’

Table 1: ANN performance on the Duplex price-size calculation. Not great!

 Training set Test set
of rows: 96 20

Average AE: 4.2461876 8.451561
Average MSE: 66.270296 220.60129

Tolerance: 10% 30%
of Good forecasts: 26 (27%) 14 (70%)
of Bad forecasts: 70 (73%) 6 (30%)

6. A classification problem

The previous examples (land price predictions) are problems similar - in their structure and
objectives - to multiple regression analysis: a set of input variables are used to determine the
values of a numerical dependent variable (target variable).

GP can also be applied to problems, where the outcome is a hit or miss result. Such problems
could also be treated with regression analysis (with a dummy dependent variable), or better with
a logit model. The treatment of mortgage default is a good example of such problem, where

underwriting criteria are used as input variables to predict a default outcome coded as 0 (no
default) or 1 (default).

The procedure is now briefly illustrated in the case of a – very clearly – contrived example (see
the data set in appendix 2). The underwriting criteria chosen here are the usual suspects:
household income, length of residence, ‘sin level’ (credit rating impediments), % of equity and
house value.

The Genetic programming package used here has different stopping rules for classification
problems and essentially – you can manually stop it whenever the hit rates are satisfactory. In our
case, the hit rate was up to 95.9% on both the training and validation test within less than a
minute and the intermediate output graph (after 12 seconds) is presented below in Figure 3
 Figure 3: The Mortgage default model after 12 seconds.

In contrast, the Artificial Neural Network model did not perform well at all with this type of
classification problem.The summary of the ANN output is presented in Table 2
Table 2: The mortgage default ANN output.

 Training set Test set

of rows: 41 8

Average AE: 0.0809943 0.28308077

Average MSE: 0.0344385 0.19441146

Tolerance: 10% 30%

of Good
forecasts: 14 (34%) 0 (0%)

of Bad
forecasts: 27 (66%) 8 (100%)

From these two simple illustrations we can conclude that Genetic programming works. Even in
the very naïve hands of a first time experimenter using the cheap version of a commercial
package.

Of course, as with Artificial Neural Network, the model is a very much a black box, but – in view of
the power of the tool – this `black boxness’ can easily be tolerated. It should also be said that –
for many ‘down town’ users, multiple regression software packages are – at least – as obscure
and impenetrable: this does not seem to prevent the widespread usage of regression results.

Having established the usefulness of the instrument and – after this maiden flight – hoping to use
it more in the future, I would like to briefly discuss the nature and limitation of the Darwinian
metaphor and thus – at last - clarify the meaning of this paper’s title.

7. Let’s beware of metaphors

Genetic programming borrows its name and metaphor from the domain of biology in the same
way as, previously, artificial neural network borrowed its own metaphor from neurology and
medical sciences.

This reverential support from the ‘real sciences’ is quite typical of the epistemological bias that
has burdened the development of economics and other social sciences. However in GP, the
borrowing was not initiated by economics or social sciences but by other ‘real sciences’ such as
computer sciences and operation research. Still, we suggest that the analogies to the natural
world are used – to a certain extent – as a ‘blinding by science’4 argument: this reverential
reference to biology has the effect of making the argument more authoritative. In other words the
reference to fundamental natural and biological processes confers nobility and credibility to the
esoteric and non-intuitive machinery behind the algorithms.

This recourse to the biological metaphor is particularly interesting in the case of artificial neural
network. Nowadays, most introductory presentations of artificial Neural Network applications rely
on nifty Power Point pictures of the brain with neurons and synapses (preferably in colour)
actively engaged in smart connectivity. Unfortunately, this picturesque description of artificial
neural network is far too reductionist. ANN algorithms are much (much, much) simpler than real
biological brains neural functioning.

ANN simply proceeds through searching algorithms that filter out the non-performing branching of
quasi-random calculations. The fact that the screening may go through many levels does not
change the nature of the process and certainly does not make more ‘like a real brain’. ANN is
nothing more that a streamlined heuristic procedure. The efficiency and performance of ANN is
indeed quite impressive, but the over-analogizing it to biological brain chemistry by many of its
proponents is borderline false representation.

In a sense, Genetic programming suffers from the same ‘over-analogising’. However, at least to a
certain point, the analogy has more pedagogical power than the analogy used in ANN. As we
have seen, the borrowed language and concepts are quite useful similes that do facilitate the
understanding and probably the development of the GP instruments. Still, the metaphor is only a
metaphor and it should not be pushed beyond its pedagogical function. GP algorithms and real
natural selection are quite different: some of the differences are obvious, some of them are more
subtle.

⎯ Incomparable time scales

One of the obvious difference is the vast difference in time scale. Natural selection spreads out in
the past and in the future over an unknown billions of years. The real biological computer runs for
a very very long period and it runs very very slowly. The rate of mutation is slow (e.g. for Homo
sapiens, significant mutations seem to occur only every 10 000 years) but still, over the eons the
number of steps taken by the ‘algorithm’ is immensely larger than the one taken by the most
powerful computer programs. In fact, commercial software providers sell their products on the
basis of their extreme speed. The package used for the purpose of this paper runs ‘only’ a few
millions ‘tournaments’ for the land pricing example in less than 30 minutes on a notoriously
sluggish PC and Intel based system.

⎯ Natural selection is extremely wasteful

4 Expression borrowed from R. Dawkins (2002).

Once again, the numbers are intelligible, but an unknown and prodigiously high number of
evolutionary attempts are wasted in the natural selection process. Zillions of variants and species
just do not make it.

In contrast, GP algorithms try their best to minimise the wastage by imposing elimination rules on
the less performing models. Thus, a ruthless screening of the losers has the advantage of
producing a smaller number of ‘losing’ descendants. Cutting the evolution branch as early as
feasible has the beneficial effect of reducing the wastage and – more to the point – of reducing
memory requirements and computer running time.

⎯ Natural selection has no teleogy

This point may be less obvious and certainly less palatable to Theists. Natural selection has no
final overreaching objective. It certainly does not try to reach some form of ideal survivor. Natural
selection occurs in perpetuity without any ‘target’. The engine of the process is not its finality but
only the fundamental genes reproductive necessity.

The observable present result of evolution (a few millions species and one specie that can even
count the others) is extremely transitory and subject to constant transformations. No specie will
survive for very long and certainly no specie can be considered as ‘closer to the target’. Evolution
churns along multitude of variants that adapt to the changing environments, the variants are short
lived (relatively speaking) because the environments are changing fast (again, relatively
speaking).

By contrast - and this is the point made in the title of this essay – GP algorithm have very specific
targets: it has a ‘teleos’. Genetic algorithms have the declared objective to find the ‘fittest’ the
model that will track the target as close as possible. The targets are defined narrowly (a vector of
numbers) and the algorithm is ‘trained’ to get results that are the best approximation of the results
observed in the validation matrix. The process is not normative: it does not try to find some
‘optimal solution’ (optimal?.. with respect to which criteria?). It is a pure heuristic: it tries, fails,
tries again and eventually gets close enough to stop.

Once again, the GP Darwinian metaphor is useful but it is only a metaphor. Our ingrained
scientific scepticism should keep us vigilant enough not to turn our biological metaphors into
allegories. No one but Deidre Mc Closkey could put it better:

When the metaphors do battle with the story, the result is nonsense, nonsense that can
hurt when people believe it. People do. People especially believe in allegories, such as
the combined metaphors and stories of economics, because an allegory in its
completeness protects the illusion of prediction and control. (McCloskey 1992) (p. 97)

Appendix 1

Table 3 The ‘one-variable’ Duplex pricing GP best run.

Duplex surface

in m2
Observed prices in

AUD (rounded)

Prices predicted by the
best GP run (5

minutes running time)

Difference (in
AUD)

 78 48,100 44,855 3,245
 91 56,300 62,820 -6,520
 56 61,700 67,297 -5,597
 82 62,000 62,777 -777
 221 67,000 78,425 -11,425
 78 70,100 84,855 -14,755
 70 76,800 83,464 -6,664
 55 87,100 82,949 4,151
 82 87,200 82,777 4,423
 73 89,200 86,055 3,145
 115 94,500 91,327 3,173
 82 104,300 122,777 -18,477
 76 108,600 107,154 1,446
 71 109,400 128,418 -19,018
 82 114,900 122,777 -7,877
 79 115,100 125,771 -10,671
 93 117,100 138,252 -21,152
 82 117,900 122,777 -4,877
 83 119,200 118,787 413
 105 122,000 122,125 -125
 73 122,200 116,055 6,145
 86 123,500 136,991 -13,491
 80 126,000 134,735 -8,735
 76 126,300 127,154 -854
 80 127,700 134,735 -7,035
 80 128,100 134,735 -6,635
 80 130,600 134,735 -4,135
 90 132,200 144,765 -12,565
 82 133,500 130,777 2,723
 85 133,600 141,056 -7,456
 99 134,500 136,419 -1,919
 98 134,600 154,812 -20,212
 136 134,800 135,758 -958
 140 135,600 139,267 -3,667
 84 135,700 139,919 -4,219
 75 136,900 139,120 -2,220
 87 137,100 135,731 1,369
 76 137,800 137,154 646
 84 137,800 139,919 -2,119
 91 140,200 142,820 -2,620
 118 140,800 143,783 -2,983
 88 142,600 145,824 -3,224
 83 143,300 148,787 -5,487
 113 145,500 155,524 -10,024
 63 146,300 140,076 6,224
 80 147,300 148,275 -975
 92 147,400 150,371 -2,971
 56 151,300 157,297 -5,997
 75 151,800 149,120 2,680
 80 153,800 134,735 19,065
 79 155,900 135,771 20,129

 76 156,100 157,154 -1,054
 75 159,500 159,120 380
 132 160,200 171,359 -11,159
 84 161,400 159,919 1,481
 83 163,100 148,787 14,313
 84 164,200 159,919 4,281
 83 165,300 148,787 16,513
 94 166,200 169,383 -3,183
 72 167,300 167,121 179
 79 172,500 175,771 -3,271
 74 176,700 172,379 4,321
 130 177,500 182,996 -5,496
 74 177,900 167,356 10,544
 77 178,100 189,331 -11,231
 75 178,500 179,120 -620
 75 178,700 179,120 -420
 127 179,000 178,701 299
 85 180,200 181,056 -856
 76 181,200 187,154 -5,954
 56 182,200 187,297 -5,097
 144 182,800 196,557 -13,757
 87 182,900 175,731 7,169
 82 184,000 182,777 1,223
 73 185,200 186,055 -855
 149 187,700 186,105 1,595
 76 188,200 197,154 -8,954
 145 189,200 199,588 -10,388
 70 189,600 183,464 6,136
 137 191,800 192,728 -928
 85 197,200 185,056 12,144
 85 197,500 181,056 16,444
 110 202,900 203,959 -1,059
 94 203,900 209,383 -5,483
 83 209,600 208,787 813
 78 211,400 214,855 -3,455
 205 213,200 227,646 -14,446
 119 215,600 204,347 11,253
 132 220,300 221,359 -1,059
 98 222,700 214,812 7,888
 138 225,000 223,590 1,410
 167 226,000 237,484 -11,484
 104 226,800 224,636 2,164
 82 227,000 222,777 4,223
 132 228,500 222,359 6,141
 160 230,100 238,186 -8,086
 123 234,600 232,540 2,060
 144 236,300 226,557 9,743
 158 237,600 209,039 28,561
 114 244,900 240,442 4,458
 172 252,700 265,746 -13,046
 161 255,100 251,862 3,238
 160 255,400 248,186 7,214
 146 255,800 266,824 -11,024
 140 261,400 279,267 -17,867
 146 261,700 266,824 -5,124
 128 263,100 268,973 -5,873
 142 275,100 266,726 8,374
 146 276,900 266,824 10,076
 187 288,600 273,886 14,714
 170 309,800 308,620 1,180
 180 319,900 304,742 15,158

 76 362,700 367,154 -4,454
 76 406,300 407,154 -854
 140 779,300 769,267 10,033
 140 825,900 819,267 6,633
mean 102.2241379 183,372 184,352 -980
standard deviation 8,805

Appendix 2
The one variable duplex pricing: Regression results

Regression Statistics

Multiple R 0.397024802
R Square 0.157628693
Adjusted R Square 0.150239471
Standard Error 9.545342466
Observations 116

ANOVA

 df SS MS F
Regression 1 1943.656834 1943.656834 21.33224489
Residual 114 10386.94616 91.11356279
Total 115 12330.60299

 Coefficients Standard Error t Stat P-value

Intercept 5.718222622 2.763491593 2.069202105 0.040787685
AREA_HSE 0.118264731 0.025605718 4.618684324 1.02162E-05

Observation

Predicted
Residuals

1 24.75884425 0.491155746
2 17.42643095 -4.626430955
3 15.77072473 3.529275274
4 14.46981269 2.530187311
5 15.41593053 -2.165930534
6 16.00725419 -3.207254187
7 19.79172557 0.908274433
8 12.34104754 5.258952463
9 22.51181437 4.488185628

10 14.94287161 -10.74287161
11 15.77072473 -3.120724726
12 31.85472809 -26.05472809
13 14.46981269 2.330187311
14 14.70634215 0.61865785
15 22.74834383 0.451656167
16 19.31866664 -10.81866664
17 21.32916707 -5.529167066
18 15.77072473 3.329275274
19 15.41593053 -4.415930534
20 13.99675377 -7.296753766
21 22.98487329 2.515126705
22 19.08213718 -4.582137184
23 15.77072473 1.479275274
24 16.59857784 -2.09857784
25 26.05975629 -1.259756291
26 25.46843264 -2.968432638
27 15.17940107 -2.879401073
28 15.41593053 2.984069466
29 19.67346084 -6.473460837
30 15.06113634 -3.911136342
31 22.27528491 -8.825284911
32 27.83372725 0.166272749
33 15.65246 -0.252459995
34 15.41593053 -9.415930534
35 17.30816622 4.191833776
36 16.48031311 -11.28031311

Prices in 10 000 $

37 14.23328323 1.866716773
38 22.74834383 -4.748343833
39 14.35154796 -2.951547958
40 12.34104754 2.158952463
41 14.35154796 3.848452042
42 14.35154796 -6.051547958
43 29.9624924 -8.962492402
44 22.27528491 3.724715089
45 15.06113634 -0.361136342
46 15.53419526 -2.134195264
47 15.53419526 0.465804736
48 15.17940107 -2.679401073
49 15.65246 -2.952459995
50 15.53419526 -0.134195264
51 16.12551892 -1.925518918
52 22.98487329 3.015126705
53 24.64057952 -2.440579524
54 24.40405006 -1.404050062
55 16.8351073 3.164892699
56 16.71684257 -5.916842571
57 15.17940107 -2.879401073
58 13.99675377 4.503246234
59 14.70634215 -4.22634215
60 15.41593053 -6.925930534
61 14.70634215 -1.22634215
62 14.70634215 2.79365785
63 21.92049072 -3.670490719
64 17.30816622 -4.508166224
65 18.72734299 1.272657008
66 19.20040191 4.799598086
67 15.88898946 -3.888989456
68 15.65246 -2.232459995
69 14.70634215 -2.30634215
70 14.82460688 2.675393119
71 14.1150185 -3.615018497
72 15.17940107 -0.679401073
73 22.86660856 -4.716608564
74 15.41593053 -5.115930534
75 22.27528491 59.72471509
76 22.27528491 54.72471509
77 20.73784341 -3.237843413
78 15.65246 -0.152459995
79 14.58807742 2.311922581
80 14.58807742 1.211922581
81 15.06113634 1.238863658
82 27.00587414 4.494125864
83 15.53419526 -4.534195264
84 14.94287161 5.557128389
85 14.94287161 -8.742871611
86 14.58807742 -1.388077419
87 14.58807742 2.911922581
88 16.8351073 -0.635107301
89 15.53419526 4.465804736
90 18.01775461 3.682245392
91 20.26478449 2.33521551
92 23.33966749 -5.339667487
93 15.41593053 -4.215930534
94 12.34104754 -6.341047537
95 16.36204838 -4.062048379
96 21.32916707 1.470832934
97 22.98487329 3.815126705

98 22.03875545 -0.23875545
99 24.64057952 0.859420476

100 15.17940107 -2.579401073
101 13.16890065 1.031099348
102 21.80222599 -9.250225988
103 14.58807742 0.561922581
104 25.82322683 4.92677317
105 16.48031311 -2.98031311
106 15.17940107 -0.979401073
107 12.22278281 -4.272782807
108 20.85610814 5.143891857
109 21.0926376 -4.092637604
110 18.13601934 -5.936019338
111 16.00725419 1.892745813
112 21.32916707 0.670832934
113 14.70634215 3.79365785
114 15.41593053 6.584069466
115 14.70634215 25.79365785
116 14.70634215 20.79365785

 9.503750362

Selected references

Banshaf, W., P. Nordin, et al. (1998). Genetic Programming, an introduction,. San Francisco, CA,
Morgan Kauffman Publishers inc.

Bauer, J., R.J and F. G. FitzGerald (2000). "Using genetic programming to design a generalized
trading system." Managerial Finance 26(6): 1.

Bhattacharyya, S. (2003). "Evolutionary computation for database marketing." Journal of
Database Marketing 10(4): 343.

Birchenhall, C. R. (1995). "Genetic algorithms, classifier systems and genetic programming and
their use in models of adaptive behaviour and learning." The Economic Journal 105(430):
788.

Bodnovich, T. (1995). Genetic Algorithms in Business and Their Supportive Role in Decision
Making, College of Business Administration Kent State University.

Carbone, R. and R. L. Longini (1977). "A Feedback Model for Automated Real Estate
Assessment." Management Science 24(3): 241-248.

Chen, S. (2001). "John Holland's Legacy in Economics: Artificial Adaptive Economic Agents --
From 1986 to the Present in Retrospect." Computing in Economics and Finance (April).

Chen, S.-H., Ed. (1996). Genetic programming, predictability, and stock market efficiency. Oxford,
Pergamon Press.

Chen, S.-H. (2002). Genetic Algorithms and genetic programming in computational finance.
Dordrecht, Kluwer Academic Publishers.

Chen, S. H. and C. H. Yeh (2000). "Simulating economic transition processes by genetic
programming." Annals of Operations Research 97(1): 265.

Chen, S. H. and C. H. Yeh (2001). "Evolving traders and the business school with genetic
programming: A new architecture of the agent-based artificial stock market." Journal of
Economic Dynamics & Control 25(3,4): 363.

Chen, S. H. and C. H. Yeh (2002). "On the emergent properties of artificial stock markets: The
efficient market hypothesis and the rational expectations hypothesis." Journal of
Economic Behavior & Organization 49(2): 217.

Chen, S.-H. and C.-C. Ni, Eds. (1997). Evolutionary artificial neural networks and genetic
programming: a comparative study based on financial data. Vienna, Springer Verlag.

Chen, S.-H. and C.-H. Yeh (1997). "Toward a computable approach to the efficient market
hypothesis: an application of genetic programming." Journal of Economic Dynamics and
Control 21: 1043-1063.

Chughtai, M. (1995). Determining Economic Equilibria using Genetic Algorithms. London,
Imperial College.

Colin, F., M. John Paul, et al. (2005). "Risk adjusted returns from technical trading: a genetic
programming approach." Applied Financial Economics 15(15): 1073.

Darrell, W. (2001). "An overview of evolutionary algorithms: Practical issues and common
pitfalls." Information and Software Technology 43(14): 817.

Dawkins, R. (2006). God Delusion.

Do, Q. and G. Grudnitski (1992). "A neural network approach to residential property appraisal."
Real Estate Appraiser(December): 38-45.

Dworman, G., S. O. Kimbrough, et al. (1995). "On automated discovery of models using genetic
programming: Bargaining in a three-agent coalitions game." Journal of Management

Information Systems 12(3): 97.

Fischer, D. and P. Lai Pin-Ying (2006). ANN application to Mass Appraisal. Pacific Rim Real
Estate Society, Auckland.

Fischer, D. and P. Lai Pi-Ying (2007). Land price modeling with genetic algorithms and artificial
neural network procedures. PRRES. Kuala Lumpur.

Fyfe, C., P. Marney J., et al. (1999). "Technical analysis versus market efficiency - A genetic
programming approach." Applied Financial Economics 9(2): 183.

Hansen, J., P. B. Lowry, et al. (2007). "Genetic programming for prevention of cyberterrorism
through dynamic and evolving intrusion detection." Decision Support Systems 43(4):
1362.

Holland, J. (1960). Iterative circuit computers Western Join Computer Conference.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan
Press.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of
Michigan Press.

Huimin, Z. (2007). "A multi-objective genetic programming approach to developing Pareto optimal
decision trees." Decision Support Systems 43(3): 809.

Jain, A. K., J. Mao, et al. (1996). "Artificial neural networks: a tutorial." Computer Publication
29(3).

Kaboudan, M. A. (1999). "A measure of time series' predictability using genetic programming
applied to stock returns." Journal of Forecasting 18(5): 345.

Kaboudan, M. A. (2000). "Genetic Programming Prediction of Stock Prices." Computational
Economics 16(3): 207.

Koza, J., F. H. Bennett III, et al. (1999). Genetic Programming III: Darwinian Invention and
Problem Solving, Morgan Kaufmann.

Koza, J., M. Keane, et al. (2003). "Evolving inventions." Scientific American.

Koza, J. R. (1992). Genetic programming: On the Programming of Computers by Means of
Natural Selection Cambridge, MIT Press.

Lensberg, T. (1999). "Investment behavior under Knightian uncertainty - An evolutionary
approach." Journal of Economic Dynamics & Control 23(9,10): 1587.

Lensberg, T., A. Eilifsen, et al. (2006). "Bankruptcy theory development and classification via
genetic programming." European Journal of Operational Research 169(2): 677.

Lewis, O. M., J. A. Ware, et al. (2001). "Identification of Residential Property Sub-Markets using
Evolutionary and Neural Computing Techniques." Neural Computing & Applications
10(2): 108-119.

Marcos, Á.-D. and Á. Alberto (2005). "Genetic multi-model composite forecast for non-linear
prediction of exchange rates." Empirical Economics 30(3): 643.

Matthew, C. R. (2005). "Technical analysis and genetic programming: Constructing and testing a
commodity portfolio." The Journal of Futures Markets 25(7): 643.

Mc Greal, S., A. Adair, et al. (1998). "Neural Networks and the prediction of residential values."
Journal of Property Valuation and Investment.

McCloskey, D. N. (1992). If You're So Smart: The Narrative of Economic Expertise. Chicago,
University of Chicago Press, 1992,.

McCluskey, W. and S. Anand (1999). "The application of intelligent hybrid techniques for the

mass appraisal of residential properties." Journal of Property Investment & Finance 17(3):
218-239.

McKee, T. E. and T. Lensberg (2002). "Genetic programming and rough sets: A hybrid approach
to bankruptcy classification." European Journal of Operational Research 138(2): 436.

Neely, C. (2003). "Risk-adjusted, ex ante, optimal technical trading rules in equity markets."
International Review of Economics & Finance 12(1): 69.

Neely, C., P. Weller, et al. (1996). "Is Technical Analysis in the Foreign Exchange Market
Profitable? A Genetic Programming Approach." The Journal of Financial and Quantitative
Analysis 32(4): 405-426.

Neely, C. and P. A. Weller (2002). "Predicting exchange rate volatility: Genetic programming
versus GARCH and RiskMetrics." Review - Federal Reserve Bank of St. Louis 84(3): 43.

Nguyen, N. and A. Cripps (2001). "Predicting Housing Value: A Comparison of Multiple
Regression Analysis and Artificial Neural Networks." Journal of Real Estate Research
22(3): 313-336.

Oakley, H. (1996). Genetic programming, the reflection of chaos, and the bootstrap: toward a
useful test for chaos., MIT Press.

Rossini, P. (1997). Application of Artificial Neural Network to the Valuation of Residential
Properties. Pacific Rim Real Estate Society, Palmerston, New Zealand.

Salcedo-Sanz, S., F.-V. JL, et al. (2005). "Genetic programming for the prediction of insolvency in
non-life insurance companies." Computers & Operations Research 32(4): 749.

Schmerken, I. (2004). "Survival of the Fittest Trading Models." Wall Street & Technology: 32.

Trigueros, J. R. (2000). Essays on the application of evolutionary computing to accounting and
finance. United States -- Louisiana, Tulane University.

Wagner, N. and J. Brauer (2007). "Using genetic dynamic programming to forecast the the United
States Gross Domestic product with military expenditure as an explanatory variable.E."
Defence and Peace Economics 18(5): 451.

Wang, J. (2000). "Trading and hedging in S&P 500 spot and futures markets using genetic
programming." The Journal of Futures Markets 20(10): 911.

Whitley, L. D. and M. Vose (1995). Foundatiions of Genetic Algorithms, Morgan Kaufmann
Publishers, Inc.

Wilson, I. D., S. D. Paris, et al. (2002). "Residential property price time series forecasting with
neural networks." Knowledge-Based Systems 15(5-6): 335-341.

Winter, G., J.Periaux & M.Galan, Ed. (1995). Genetic Algorithms in Engineering and Computer
Science, John Wiley and sons.

Wonga, B. K. and Y. Selvib (1998). "Neural network applications in finance: A review and
analysis of literature (1990–1996)." Information and Management 34(3): 129-139.

Worzala, E., M. Lenk, et al. (1995). "An Exploration of Neural Networks and Its Application to
Real Estate Valuation." Journal of Real Estate Research 10(2): 185-202.

	1. Genetic programming
	2. The genetic analogy: from genes to strings of bits.
	3. How to make it run in practice.
	4. A simplistic example: land price and lot size
	5. Mimicking a hedonic model… with one variable only.
	6. A classification problem
	7. Let’s beware of metaphors
	 Incomparable time scales
	 Natural selection is extremely wasteful
	 Natural selection has no teleogy

