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Abstract

In this paper we investigate the commonly used autoregressive filter method

of adjusting appraisal-based real estate returns to correct for the perceived

biases induced in the appraisal process. Since the early work by Geltner

(1989), many papers have been written on this topic but remarkably few have

considered the relationship between smoothing at the individual property

level and the amount of persistence in the aggregate appraised-based index.

To investigate this issue in more detail we analyse a sample of individual-

property level appraisal data from the Investment Property Database (IPD).

We find that commonly used unsmoothing estimates overstate the extent of

smoothing that takes place at the individual property level. There is also

strong support for an ARFIMA representation of appraisal returns.



1 Introduction

One of the topics in real estate research that has received significant attention

has been the treatment of appraisal-based returns. Recent evidence from a

review of real estate articles suggests that research on this topic dominates

the citation list in real estate journals (Domrow and Turnbull 2004). While

attempts have been made to construct transaction-based returns series, use

of appraisal-based returns remains common in the academic literature and

is almost exclusively used in commercial research applications. There is a

widespread belief among academics that such appraisal-based returns do not

accurately represent the underlying movements of the commercial property

asset class as biases are introduced in the appraisal process by appraisers

seeking to dampen volatility in their price estimates. This view is based on

the well known findings of Quan and Quigley (1991) and also confirmed em-

pirically in Clayton, Geltner and Hamilton (2001). Other factors also induce

econometric problems with appraisal-based indices, such as aggregation, and

these issues have been discussed in Geltner (1993a) and Bond and Hwang

(2005).

The general response to this problem has been to apply a statistical filter

to the appraisal-based returns to remove all or part of the autocorrelation

in the series. The corrected or “unsmoothed” series is then taken to more

accurately reflect the movements in the “true” returns process. The most

common statistical filtering procedures are based on Geltner (1991, 1993b)

and Fisher, Geltner and Webb (1994). More recent work has been conducted

by Cho, Kawaguchi and Shilling (2003), Edelstein and Quan (2004) and

Bond and Hwang (2003, 2005) and a useful survey of the literature has been

provided by Geltner, MacGregor and Schwann (2003). However, work on

smoothed returns is not confined to real estate and is also discussed for other
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asset classes, such as hedge funds, by Getmansky, Lo and Makarov (2004).

Given the extensive volume of research on this topic and the many “un-

smoothing” procedures that have been suggested, there has been little re-

search investigating the statistical characteristics of an aggregate perfor-

mance index and its relationship to the underlying property return process.

Exceptions to this include Giacotto and Clapp (1992) who provide Monte

Carlo evidence on appraisal smoothing behavior, and Edestein and Quan

(2004) who compare appraisal returns with transaction information to assess

the impact of smoothing.

The goal of this research is to investigate the nature and existence of

three econometric problems common to appraisal-based return series. To

do this we utilize data on individual property returns from the Investment

Property Databank (IPD) for UK commercial real estate. This dataset is

very similar to the NCREIF data commonly used in US research. Because of

the similarity of construction methods it is believed that conclusions derived

from using UK data will still have relevance to researchers using NCREIF

data or similar appraisal-based data in other countries.

Our methodology is to use Monte Carlo simulations and bootstrapping

techniques on a sample of individual property returns to generate alternative

aggregate index series. Knowing the individual property returns allows us

to form an estimate of the “true” underlying returns process using similar

methods to Giacotto and Clapp (1992). The procedure clearly shows some

interesting issues that, to our knowledge, have not been well discussed in the

literature.

We find several interesting results. First, the smoothing level in an ap-

praisal based index is not as large as in previous studies. At the individ-

ual property level, the smoothing parameter is as low as 0.14 when only
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smoothing is allowed for at the individual property level, while it could be

up to 0.425 when both smoothing and nonsynchronous appraisal are consid-

ered. Therefore the usual smoothing coefficient, i.e., 0.89, estimated from an

appraisal-based index is not supported by the smoothing level of individual

properties. Second, we find evidence of nonsynchronous appraisal. The non-

synchronous appraisal problem arises when appraisers value properties (or

use information for valuation) at irregular points of time.

The large difference in the smoothing levels between individual properties

and the index constructed with these individual properties appears to be a

puzzle — a “smoothing” puzzle. A few explanations are proposed to explain

the puzzle. One possibility is that the sample estimates are biased because

of a small number of observations in many individual properties. Using sim-

ulations we show that when the number of observations is small, i.e., less

than 150, the estimated smoothing level appears to be lower than the true

level or even negative. Another possibility is that aggregation effects exist

as suggested by Bond and Hwang (2005). When individual properties suffer

smoothing, the index constructed by cross-sectionally aggregating these indi-

vidual properties shows a higher level of smoothing. Finally we propose the

possibility of a highly persistent unobserved common factor in commercial

real estate returns. Then although the smoothing level of individual proper-

ties is low, the aggregated process would be display a high level of persistance,

driven by the persistent common factor (since the idiosyncratic components

of individual properties are expected to be cancelled out by aggregation).

Our study has important inplications for both academics and practition-

ers. First, it is likely that commonly used statistical filtering procedures

could over-unsmooth the appraisal index. The level of smoothing commonly

suggested for a monthly appraisal index, e.g., 0.9 in the UK, seems to be too
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large. Individual properties do not show such a high level of smoothing, nor

could any cross-sectional aggregation procedure or estimation bias in small

samples be completely responsible for such a high level of smoothing. How-

ever we can not deny that these econometric problems could contribute to

such a high level of smoothing in the appraisal index.

The layout of the paper is as follows. The next section discusses the un-

smoothing problem and provides a brief overview of the related literature.

Section 3 describes the methodology used in this study and the sampling

procedure for the individual IPD property returns. Section 4 suggest investi-

gates three explanations for the apparent smoothing puzzle observed. Section

5 concludes the paper.

2 Smoothing in Real Estate Returns

The work on smoothing in appraisal-based real estate returns is often mo-

tivated by the apparent low historical volatility relative to mean returns on

benchmark indices such as NCREIF in the US or the IPD index in the UK.

This smoothness looks particularly evident when the mean return to stan-

dard deviation ratio for real estate is compared to other asset classes such

as equities or bonds. The academic arguments for the presence of smooth-

ing in individual asset returns is based on the work of Quan and Quigley

(1989, 1991). However, empirical approaches to unsmoothing aggregate or

benchmark real estate indices had previously been suggested by Blundell and

Ward (1987), Geltner (1989) and Ross and Zissler (1991). Extensive sum-

maries of the smoothing literature can be found in Geltner and Miller (2001)

and Geltner, MacGregor and Schwann (2003), to which the interested reader

is referred for a detailed background to the smoothing debate. It is impor-
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tant to point out that not all researchers agree with the generally accepted

view that smoothing is present in real estate data and Lai and Wang (1998)

discuss a number of criticisms of the existing literature on smoothing.

To understand the issue of smoothing in real estate returns, consider the

model of smoothing described in Bond and Hwang (2005). Start with the

assumption that asset returns follow a mean plus noise process;

rit = μi + σiεit (1)

where rit is the log-return of asset i at time t, εit
iid∼ N(0, 1), and μi and σi

are the expected return and standard deviation of the log-returns per unit

of time respectively.

It is commonly assumed in models of smoothing that past information

affects current price with an exponentially decreasing weight, that is, the

innovation at time t, εit, is not fully reflected at time t, but over time with

an exponential rate. When the rate is φsi, the smoothed return process for

asset i, rsit, is

rsit = μi + (1− φsi)σiεsit, (2)

where

εsit = φsiεsit−1 + εit.

In this model, φsi is an AR parameter for the level of smoothing, where

0 ≤ φsi < 1. Note that 1 − φsi in (2) is necessary to make the sum of the

weights on past innovations one so that asset returns do not under or over

reflect the innovations in the long run. The smoothed process in (2) can be

written as

rsit − μi = φsi(rsit−1 − μi) + σsiεit (3)

= φsi(rsit−1 − μi) + (1− φsi)(rit − μi),
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where σsi = (1−φsi)σi.When φsi = 0, there is no smoothing and the return

process in (3) is the same as the data generating process in equation (1).

On the other hand, as φsi becomes larger, the relative weight on the current

information (εit) decreases and the past information (εit−1, εit−2, ...) becomes

more important in the return process.

The variance and autocorrelation of the smoothed return process are

V ar(rsit) =
(1− φsi)

1 + φsi
σ2i (4)

Cor(rsit, rsit−τ) = φτ
si for τ = 1, 2, ...

The variance of smoothed returns decreases by 1−φsi
1+φsi

times and thus is less

volatile than the true process; i.e., V ar(rsit) < V ar(rit) for 0 ≤ φsi < 1.

However, the expected return (μi) remains unchanged by the smoothing pro-

cedure.

Equation (3) forms the basis of the commonly used empirical approaches

to unsmoothing real estate data. In particular, the methods of Fisher, Gelt-

ner and Webb (1994) and more recently Cho, Kawaguchi and Shilling (2003)

essentially apply a version of this model to unsmooth aggregate real estate

indices by applying the model to the real estate indices and then reverse

engineering the equation to obtain estimates of εit as a measure of the un-

smoothed real estate return (often with arbitrary assumptions placed on σi).

In extending this model Bond and Hwang (2005) argued that while such

an equation may explain smoothing for an individual asset (based on the

arguments of Quan and Quigley 1991), it is not a complete model of real

estate returns at an aggregate level (i.e. at the benchmark level to which

most investors refer). To understand aggregate real estate returns, it is nec-

essary to allow for timing errors in recording appraisals (nonsynchronous ap-

praisal) and the impact of aggregation of individual asset return to form the

benchmark index. Both of these issues have been raised by other researchers
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(Geltner 1993a, Brown and Matysiak 1998), but had not been formally in-

corporated into a modelling strategy for aggregate returns.

The nonsynchronous appraisal issue arises when there is the discrepancy

between the appraisal time point and the time point when the asset should

be appraised, which creates the well known econometric problem of ‘errors in

variables’ (see for example, Scholes and Williams 1977 and Lo and Mackinlay

1990). In the presence of nonsynchronous appraisal, Bond and Hwang show

that returns on an individual real estate asset will follow an MA(1) of the

form

rnit − μi = σniεit + θiσniεit−1, (5)

where the nonsynchronous returns (rnit) depend on parameters θi and σni.

However, in practice it is likely that the two effects of smoothing and non-

synchronous appraisal will exist together. It can be shown that if the true

return process becomes an AR(1) process when there is smoothing or a MA(1)

process when the nonsynchronous appraisal problem exists, then when both

effects are present the return process for an individual asset will follow an

ARMA(1,1) process. That is

rcit − μi = σni(1 + θiL)(1− φsi)εsit,

εsit = φsiεsit−1 + εit,

where rcit represents asset return at time t in the presence of the smoothing

and nonsynchronous appraisal and L is the lag operator. This gives us

rcit − μi = φsi(rcit−1 − μi) + θiσciεit−1 + σciεit, (6)

where σci = (1− φsi)σηi and εit
iid∼ N(0, 1) as in (1).

Finally it is necessary to consider the aggregation of the individual asset

returns to form an index. Assuming σiεit = βi²t+ηit where ηit is an idiosyn-

cratic error and ²t is a market-wide common factor, which are independent of
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each other and over time; E(ηit²t) = 0, ηit ∼ iid(0,σ2η), and ²t ∼ iid(0,σ2²), it

is shown in Bond and Hwang that the process obtained by cross-sectionally

aggregating N ARMA(1,1) return processes is

rmt − μm =
∞X
τ=0

Ec
£
φτ
si(θi²

∗
it−1−τ + ²

∗
it−τ)

¤
(7)

as N →∞, where

²∗it−τ =
σci
σi

βi²t−τ ,

and Ec(.) represents cross-sectional expectation. In order to operationalise

the model, assumptions need to be made about the distribution of the AR pa-

rameters in the model. If it is assumed that the AR parameters follow a Beta

distribution as in Granger (1980), then we have the following ARFIMA(0,d,1)

process;

(1− L)d(rmt − μm) = θ²∗t−1 + ²
∗
t , (8)

where θ = Ec(θi), d = Ec(φsi) and ²
∗
t = Ec[²

∗
it].

Therefore, an index return process whose constituents suffer the smooth-

ing and nonsynchronous appraisal problems follows a long memory process

whose properties are summarized by an autocorrelation function with a hy-

perbolic decay rate. When the individual AR parameters follow the Beta

distribution, we can directly estimate the average smoothing level and its

variance from the autoregressive fractionally integrated (ARFIMA) (0,d,1)

process since d = Ec(φsi) and V arc(φsi) =
d(1−d)
2
. Therefore estimating d

for an index return series is an alternative way of obtaining the average

smoothing level of individual processes. Moreover Bond and Hwang show

that when the market-wide common factor (²t) follows an AR(1) process,

the index should be modelled by the ARFIMA(1,d,1) process, where the AR

coefficient represents the persistence level of the common factor.

8



While there are strong theoretical arguments to favour the ARFIMA

model of aggregate real estate returns as a basis to use in unsmoothing real

estate returns, it is necessary to provide further evidence on the suitability

of the assumptions made to develop the model (in particular the distribution

of the AR parameters) and also to examine the performance of the model

compared to the standard approach to unsmooth returns. To provide this

evidence we first turn to an analysis of the individual appraisal returns for

the properties which comprise the benchmark monthly IPD index in the UK.

Using this information to calibrate the model, we provide simulation evidence

to assess the suitability of the ARFIMA model to unsmooth appraisal-based

returns.

3 Data and Smoothing Puzzle

3.1 Data

To conduct the analysis of the model we collect information on the appraised

value (capital gain) series of individual properties belonging to the IPD

monthly index (appraisals are conducted on a monthly basis). As the focus

of this paper is on appraisal smoothing, the problem is more appropriately

analysed by concentrating on the capital gain series rather than the total

return (that are calculated by aggregating capital gains and rental income).

Rental income in the UK, which may be a significant proportion of the total

return, is usually only subject to change once every five years, and thus does

not reflect either the smoothing or nonsynchronous appraisal problem.1

1However we note that the infrequent changes in rental income could create higher

persistence in the total return series. See Banerjee and Urga (2005) for the discussion of

the effects of structural breaks on the persistence.
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The individual properties are the constituents of the UK IPD index, hav-

ing been used to construct the IPD index from 1987 to 2005. We only analyse

properties that have been included in the index for at least 60 months. This

restriction is to prevent any econometric problems (i.e., small sample prob-

lems) faced when the AR and MA parameters are estimated. After allowing

for this restriction we have a total number of 3409 properties, we then filter

out ‘outliers’ whose characteristics are significantly different from most of the

others and thus could lead to inappropriate inferences in the analysis. We

remove outliers with the following procedure. Average returns of individual

properties should be within three standard deviations of the average return,

the monthly standard deviation of a property’s returns should be less than

10 percent, and the maximum and minimum monthly returns should be less

than 50 percent and larger than -30 percent respectively. By applying the

procedures we remove 166 properties. Other outlier removing procedures are

related to the estimates of the ARMA(1,1) model.2 We face a large num-

ber of estimation errors or unusual estimates, and remove properties whose

the standard errors of AR and MA estimates are larger than 5 or properties

that have parameters that are not stationary or invertible. The additional

filtering procedure removes 849 properties, the largest proportion of which

is due to the nonstationarity and noninvertibility conditions imposed (621

properties). As suspected the filtered out properties have smaller numbers

of observations (median observation is 85 months). After applying these fil-

tering procedures we have 2394 properties which have been used for further

analysis. These filtering procedures are arbitrary, but the statistical proper-

ties of the selected properties are, on the whole, not different from those of

2We use the ARMA(1,1) model rather than AR(1) model in order to select properties

that can be used for both smoothing and nonsynchronous appraisal.

10



the original 3409 properties.

The statistical properties of the individual property returns data are sum-

marised in Table 1. During the 18 years for which we have data available,

the average monthly return of the individual properties is 0.25 percent with

an average standard deviation of 2.32 percent. The statistics of the relevant

index returns are reported in the last three columns in the table. The average

return and standard deviation of the IPD capital gain index (IPDC) return

are 0.29 and 0.79 percent respectively, while the IPD total return index re-

ports an average return of 0.88 percent. Thus rental income consists of 68

percent of the total return. By way of comparison, returns on the FTSE Real

Estate index are far more volatile and fat-tailed.

The average Sharpe ratio of individual properties is 0.12 (or in annual

terms, 0.4), which is far less than 0.37 of the IPD capital gain index return.

The difference is mainly due to the small standard deviation of the IPD

capital gain return. This clearly shows that aggregation reduces volatility

since idiosyncratic errors of individual properties are cancelled out by the

aggregation. Therefore the high Sharpe ratio of the index does not automat-

ically suggest that individual properties have similar Sharpe ratios. When

the rental income, that is fixed in most cases, is included, individual proper-

ties have an average return of 0.88 percent with average standard deviation

of approximately 2.32 (unchanged), giving a Sharpe ratio of 0.38. But this is

still far less than 1.14 obtained from the IPD total index return. The Sharpe

ratio of individual properties is one third of that of the index.

3.2 A Smoothing Puzzle

To analyse the issue of smoothing in real estate returns we first estimate the

parameters for an AR(1) process for all the individual properties selected in
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our sample. The AR(1) process models only the impact of smoothing. The

histogram of the estimated AR parameters is shown in Figure 1. The average

value of AR parameters is only 0.141 with standard deviation of 0.156 (see

panel B of Table 2). Around 16 percent of the estimated AR parameters

are negative. The figure and statistics suggest weak evidence of smoothing:

the estimated individual AR parameters are not significantly different from

zero. On the other hand the AR estimate for the IPDC (IPD capital gain

index series) return shows a high level of persistence; i.e., the AR parameter

estimate is 0.886, with standard error of 0.032 (see panel A of Table 2).

One major problem with the AR process is that the AR parameter esti-

mated is seriously downward biased if there is a negative MA component. In

other words, as discussed in Bond and Hwang (2005), when individual proper-

ties suffer from nonsynchronous appraisal problems in addition to smoothing,

the true process follows an ARMA(1,1) process with a negative MA coeffi-

cient. In this case the AR(1) process is a misspecified version of the true

ARMA(1,1) process, and the AR estimates obtained from the AR(1) model

are downward biased. Therefore we estimate an ARMA(1,1) process for the

individual property returns to obtain AR and MA parameters, each of which

represents smoothing and nonsynchronous appraisal. Figures 1B and 1C and

Table 1 show some interesting patterns in the estimated AR and MA param-

eters. First, the average value of estimated AR parameters is 0.425 which is

around three times higher than that of the AR(1) process in Figure 1A. The

density function is negatively skewed and the median is much higher, i.e.,

0.77. Thus the AR estimates from the ARMA(1,1) model suggest a much

higher level of smoothing than those from the AR(1) model. Second, the

average value of estimated MA parameters is -0.296 and the median is -0.58.

As explained in Bond and Hwang (2005) these negative MA parameters sug-
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gest the existence of nonsynchronous appraisal. However when the statistics

from individual properties are compared with those of the index in panel A

of Table 2, the IPDC return still shows much higher levels of persistence.

The estimated AR parameter is 0.952 from the ARMA(1,1) model.

This leads to an intriguing set of results, both the AR(1) and ARMA(1,1)

models show a high level of smoothing in the index. However at the individual

property level, the smoothing level is far less than that obtained for the

index. This large difference in the smoothing levels, which we call ‘smoothing

puzzle’, needs to be explained.

4 Some Explanations for the Smoothing Puz-

zle

In this section we propose three alternative explanations to explain the

smoothing puzzle. The first explanation concerns whether the large number

of negative AR estimates observed (negative smoothing) actually represents

the true probability density function of the individual AR parameters. We

address this concern by showing the existence of estimation biases in relation

to small samples. The second explanation is if cross-sectional aggregation

increases the persistence level in the index, the idea proposed by Bond and

Hwang (2005). The last explanation we investigate is whether the underly-

ing common factor in real estate is efficient. It may not be solely the issue

of appraisal smoothing in individual properties that contributes to the high

persistence levels in the index. There could be other common factors that

explain the high persistence in the index.
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4.1 Is Negative Smoothing Possible?

In the sample estimates there are many negative AR estimates and positive

MA estimates that are not consistent with smoothing and nonsynchronous

appraisal respectively. Negative smoothing suggests that appraisers overre-

act to information and higher valuations follows lower valuations, and vice

versa. However, the AR and MA estimates are noisy; many of them are

not significantly different from zero. Moreover there may be the biases in

the estimates from the assets that have been included in the IPD index for

only a relatively short period of time. The correlation coefficient between

AR estimates and the number of observations is positive and significant, i.e.,

0.183. Thus the properties that have been included in the index for short

periods of time are likely to show lower or negative AR estimates. As shown

in Figure 2 the majority of properties have less than 150 months of observa-

tions and this could create small sample problems for our estimates. If we

only consider the properties that have stayed in the index for longer than 150

months, Figure 3 shows that most of the AR estimates are positive while the

MA estimates are negative. The median AR estimate is 0.83 and the median

MA estimate is -0.67. Thus we observe a high value for the AR parameters

of properties in the index for longer time periods. This raises the possibility

that small samples create a downward bias (or upward bias) in AR estimates

(MA estimates). However for the majority of the properties whose history is

shorter than 150 months, this explanation does not hold.

We hypothesize the possibility of estimation bias for the properties that

have shorter monthly observations. In order to test the hypothesis, we per-

form simulations as follows. We generate 1000 ARMA(1,1) series under the

assumption that AR and MA parameters are distributed as in Figures 3B

and 3C. To explain smoothing we only allow positive AR parameters. Each

14



ARMA(1,1) series have 60 observations to allow for us to evaluate the small

sample bias. For the generated ARMA(1,1) series we estimate AR(1) and

ARMA(1,1) models whose histograms are reported in Figure 4.

In the AR estimates from the AR(1) process, there is hardly any differ-

ence between Figures 3A and 4A. On the other hand for the ARMA(1,1)

process Figures 4B and 4C show a clear difference from Figures 3B and 3C

respectively. Even if the true AR parameters are significantly left skewed

and have the mass around 0.83 (figure 3B), the small sample estimates of

AR parameters are far less skewed and have many negative AR estimates.

Similarly the estimates of the MA parameter are upward biased.

Therefore the distributions of AR and MA estimates in Figures 1B and

1C could be affected by a large number of small observations. Taking into

account the downward bias in AR estimates implies we could have a much

higher level of smoothing than suggested by the original estimates. As in

Figure 3B the smoothing level could be 0.83, which is the median of the AR

estimates that comes from the properties included in the IPD index for more

than 150 months. However, since these biases decreases with the number

of observations, our choice of 60 observations provides one extreme case and

thus in reality the effects of the small sample bias could be smaller than those

in our simulations

4.2 The Effects of Cross-sectional Aggregation

Bond and Hwang (2005) suggest that the persistence level of an index (cross-

sectionally aggregated process) is not necessarily equivalent to the average

persistence level of individual properties. When there is smoothing and thus

AR parameters are positive, an index created by aggregating the individual

AR processes becomes more persistent and thus the smoothing level calcu-
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lated with the index could be inflated. In order to investigate if cross-sectional

aggregation increases the persistence level of the index, we construct an index

return series by aggregating the 2394 AR(1) series, each of which is generated

with the estimated AR parameters. For the constructed index return series,

we estimate AR(1) and ARMA(1,1) models. The procedure is repeated 1000

times and the results are summarised in Panel A of Table 3.

The estimated AR parameter for the pseudo index returns is 0.128, on

average which is similar to the average value of the AR parameters of the

individual properties, i.e., 0.141. The result indicates that if the AR(1)

process represents the true process for the measure of smoothing, in the

index level we do not observe high smoothing, i.e., 0.886 by aggregation.

The ARMA(1,1) model also does not support the high persistent level; the

average AR estimate for the ARMA(1,1) model increases by 0.1 but is not

significant. These two models of individual asset returns do not explain why

we observe the high level of persistence in the benchmark IPDC index.

We repeat a similar bootstrapping technique except this time using an

ARMA(1,1) model as the underlying base model; An index return series

is created by aggregating the 2394 ARMA(1,1,) series each of which are

generated with the estimated AR and MA parameters. For the constructed

index return series, we estimate the AR(1) and ARMA(1,1) models. The

procedure is repeated 1000 times and results are summarised in Panel B of

Table 3. As explained in Bond and Hwang (2005) we observe larger average

values of the AR and MA parameters from the simulations than the true

values in the first two columns. However because of the large number of

negative AR parameters, the upward bias is not as severe as predicted by

Bond and Hwang (2005). Interestingly the AR parameter from the AR(1)

process is still very low, i.e., 0.138.
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The results in Table 3 suggest that we can explain some of the high

smoothing level in the index due to the issue of cross-sectional aggregation.

Cross-sectional aggregation of individual asset returns increases smoothing

levels at the aggregate level by 0.1 to 0.15. However, it is possible that the

difference between the two level of persistence (at the individual property

level vs the index level) is explained by both the cross-sectional aggregation

and the estimation bias explained in the previous section. Either one of the

explanations does not seem to resolve the puzzle, but combining the two

could be the answer.

4.3 Persistent Common Factors

Another possible explanation is that there may be unobserved common fac-

tors that are highly persistent. By cross-sectionally aggregating individual

property returns, idiosyncratic errors will disappear, and only common fac-

tors survive the aggregation (see Bond and Hwang 2005 for further discus-

sion). If markets are efficient the common factors should not be autocor-

related. However in our case the unobserved common factors (²t) could be

autocorrelated since it is hard for arbitraguers to exploit the persistence of

the unobserved common factors of the highly illiquid commercial property

market. In addition the common factors may reflect changes in macroeco-

nomic factors that move slowly over time.

To investigate the effects of the persistence of a common factor on the

persistence in the index level, we simulate the common factor as follows.

The proportion of the common factor to the idiosyncratic errors is set to 30

percent since the standard deviation of the IPD capital gain index return is

around 30 percent of that of the individual properties. In other words if we

treat the IPDC return as a common factor, its standard deviation is around
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30 percent of the individual property returns. Thus

σiεit = βi²t + ηit,

where ²t˜N(0, 0.3
2) and ηit˜N(0, 0.7

2).3 Although we use the relative size of

the standard deviation of the IPDC return we do not use the IPD index

return for ²t, since the dynamics of the IPD index return is likely to be

affected by smoothing and nonsynchronous trading. Therefore we generate

the common factor as

²t = φf²t−1 + ξt,

where we set φf = 0.1, 0.3, 0.5, 0.7, and 0.9. We set βi˜N(1,σ
2
β), and tried

various values for σβ but the results do not change.
4 Thus we report the

results with σβ = 1.

When the common factor follows an AR(1) process with the AR param-

eter φf , the index follows an ARFIMA(1,d,1) process analytically, where the

AR parameter shows the persistence level of the unobserved common fac-

tor, φf , the long memory parameter d represents the level of smoothing in

individual properties, and the MA parameter represents nonsynchronous ap-

praisal. The last row of panel A of Table 2 reports that the smoothing level of

individual properties is 0.332, the persistence of the common factor is 0.591,

and the nonsynchronous appraisal explains the negative MA of -0.287. The

smoothing level of individual properties in panel B of table 2 is 0.425 (av-

erage AR estimate) which is close to 0.332. The simulation results in Table

4 indicate that when φf is 0.7 to 0.9, the estimates of the ARFIMA(1,d,1)

model in panel A of table 2 could be obtained.

3We also used different combinations of idiosyncratic errors to common factor, but the

results do not change in a meaninful way.
4This is because E(βi) = 1 regardless of σ

2
β.We set E(βi) = 1 since the factor ft is the

market factor as the beta in CAPM.
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Therefore an unobserved common factor could explain the difference in

smoothing level between individual properties and index. The close compari-

son between simulation and estimation results indicates that the unobserved

common factor could be highly persistent, but on the other hand smoothing

level could be much smaller, i.e., 0.425.

5 Conclusion

This paper has investigated the appropriateness of commonly used stochastic

processes to explain some of the “stylised facts” of real estate returns at an

individual property level and an aggregate index level. This is important

as many of the “unsmoothing” procedures used by researchers are based on

assumptions about how appraisers’ behaviour impacts on individual property

returns but are almost always applied to aggregate index returns. We believe

that this severely overestimates the level of smoothing that actually takes

place at the individual property level.

Our analysis of individual property level appraisals lead to an intriguing

“puzzle”, we observed low levels of smoothing in individual property level

returns yet a high level of persistence in aggregate index returns. Clearly

models of appraisal smoothing that apply AR filters to the aggregate index

will overstate the extent of smoothing and may give misleading information

about the nature of “true” property returns. We investigated three possi-

ble explanations for this puzzle. The first explanation concerned the extent

to which estimation errors (in particular small sample biases) may have im-

pacted on the estimates of the stochastic processes at the individual property

level. These biases may have underestimated the extent to which smoothing

is a problem at the individual property level. We found some evidence to
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suggest that the downward bias in the smoothing parameter is greater for

those properties with fewer observations in the sample. As many of the prop-

erties which comprise the monthly IPD index had only been in the index for

less that ten years, it is possible that this could account for some of the dis-

crepancy observed. The second was that aggregation of individual property

returns lead to high levels of persistence at an aggregate level. Using the

work of Bond and Hwang (2005) we considered the process of aggregation

and found that while this can account for some of the difference between

smoothing at the individual property level and persistence at an index level,

it may not account for all of it. Finally we investigated another possibility,

that the stochastic process underlying individual appraisal-based property

returns is more complex than previously thought. While most of the litera-

ture has focused on the autoregressive component to smoothed returns and

more recently consideration has been given to an ARMA process to capture

both smoothing and nonsynchronous appraisal, there may be evidence of a

common factor representation to individual level appraised returns. On the

statistical evidence presented, this explanation also describes the puzzle be-

tween the low level of smoothing at the individual property level and the

high level of persistence of the aggregate index. If this model is appropriate,

it would have important implications for our understanding of the property

market at the micro level and further raise questions about market efficiency

and the nature of the appraisal process.

In terms of advice to researchers on using unsmoothing procedures, there

is strong evidence that simple AR filtering models are not appropriate. There

is some evidence to support the use of the ARFIMA representations put for-

ward by Bond and Hwang (2005). These models are the only ones that go

some way to capturing the complexity of the relationship between individ-
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ual property returns and the aggregate property index. Of the models put

forward by Bond and Hwang the ARFIMA (1,d,1) is better able to capture

appraisal smoothing “puzzle” found in the analysis of individual property

returns. However further work is required to understand the nature of the

process which gives rise to the common factor representation of property

returns.
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Table 1  Statistical Properties of Individual Property Returns

Mean Standard 
Deviation

Number of 
Observations

IPD Capital 
Gain Index

IPD Total 
Return Index

FTSE Real Estate 
Index

 Mean 0.25 2.32 107.96 0.29 0.88 0.95
 Median 0.25 2.12 99.00 0.22 0.82 1.29

 Maximum 1.77 8.42 225.00 2.88 3.61 18.01
 Minimum -1.76 0.50 60.00 -2.24 -1.76 -30.87 
 Std. Dev. 0.37 0.99 38.58 0.79 0.77 5.79
 Skewness -0.24 1.30 1.15 0.32 0.25 -0.88 
 Kurtosis 4.34 5.55 3.93 0.75 1.21 3.69

 Jarque-Bera 201.33 1319.96 610.63 9.21 16.00 156.68
 Probability 0.00 0.00 0.00 0.00 0.00 0.00

Autocorrelation 
with Lag 1 0.88 0.88 0.17

IndicesCapital Gains of Individual Properties

Note: The individual properties are the constituents of the UK IPD index, which have been used to construct the IPD 
index from 1987 to 2005 (to be confirmed). We take properties that have ever been included in the index for at least 60 
months. With this restriction we initially take a total number of 3409 properties, and then filter out `outliers' whose 
properties are significantly different from most of the others. Outliers are removed with the following procedure. 
Average returns of individual properties should be within the three stadard deviations of the average returns, monthly 
standard deviation of property returns should be less than 10 percent, and maximum and minimum monthly returns 
should be less than 50 percent and larger than -30 percent respectively. Using estimates of the ARMA(1,1) model we 
also remove properties whose the stadardard errors of AR amd MA estimtes are larger than 5 or properties that are not 
stationary or invertible. After applying these filtering procedures we have 2394 properties which have been used for 
analysis.



Table 2  Estimates of AR(1) and ARMA(1,1) Models

A. Estimates for the IPD Capital Gain Index Returns
AR Parameter MA Paramater d Parameter AR3 Parameter

0.886
(0.032)
0.952 -0.319

(0.023) (0.071)
0.591 -0.287 0.332 0.249

(0.171) (0.138) (0.147) (0.105)

B. Estimates for the 2394 Individual Properties Returns

AR(1) Process

AR Parameter AR Parameter MA Paramater

Mean 0.141 0.425 -0.296
Median 0.130 0.770 -0.580

Standard Deviations 0.156 0.631 0.601
Skewness 0.218 -1.078 0.918
Kurtosis 4.161 2.586 2.325

AR(1) Process

ARMA(1) Process

Notes: The models in panel A are estimated using 225 monthly returns of the IPD Capital Gains index from January 1987 
to September 2005. The estimates in panel B are calculated using 2394 individual properties described in Table 1.

ARMA(1,1) Process

Estimated Models

ARFIMA(1,d,1) Process



Table 3  Estimates of AR(1) Model and Simulated Index from AR(1) Process

A. Estimates from Simulated Index Returns Using AR(1) Process

AR(1) Process

AR Parameter AR Parameter AR Parameter MA Paramater
Average Estimate 0.141 0.128 0.248 -0.145
Standard Errors of 

Estimates (0.156) (0.066) (0.354) (0.359)

B. Estimates from Simulated Index Returns Using ARMA(1,1) Process

AR(1) Process
AR Parameter MA Paramater AR Parameter AR Parameter MA Paramater

Average Estimate 0.425 -0.296 0.138 0.565 -0.442
Standard Errors of 

Estimates (0.631) (0.601) (0.073) (0.411) (0.422)

Notes: The table summarises the simulation results.  We construct an index return series (225 observations) by 
aggregating the 2394 AR(1) series each of which are generated with the estimated AR parameters. Error terms are drawn 
randomly from the normal distributions whose standard deviations are set to estimated standard deviations of residuals. 
For the constructed index return series, we estimate the AR(1) and ARMA(1,1) models. The procedure is repeated 1000 
times

Data generating 
Process: AR(1) 

Process ARMA(1,1) Process

Data Generating Process: ARMA(1,1) 
Process ARMA(1,1) Process

Estimated Models

Estimated Models



Table 4  Simulations for Common Factors

AR(1) Process
AR Parameter AR Parameter AR Parameter MA Paramater d Parameter AR Paramater MA Paramater

Average Estimate 0.241 0.499 -0.287 0.114 0.174 -0.066
Standard Errors of 

Estimates (0.071) (0.325) (0.348) (0.314) (0.467) (0.454)

Average Estimate 0.444 0.529 -0.112 0.070 0.285 0.068
Standard Errors of 

Estimates (0.064) (0.164) (0.190) (0.281) (0.418) (0.309)

Average Estimate 0.627 0.641 -0.025 0.081 0.458 0.080
Standard Errors of 

Estimates (0.058) (0.095) (0.119) (0.272) (0.342) (0.204)

Average Estimate 0.798 0.787 0.029 0.151 0.624 0.044
Standard Errors of 

Estimates (0.040) (0.054) (0.089) (0.258) (0.283) (0.171)

Average Estimate 0.940 0.930 0.081 0.318 0.771 -0.073
Standard Errors of 

Estimates (0.022) (0.026) (0.067) (0.256) (0.254) (0.193)

Notes: The table summarises the simulation results.  We construct an index return series (225 observations) by aggregating the 2394 AR(1) series each of 
which are generated with the estimated AR parameters. Error terms are drawn randomly from the normal distributions whose standard deviations are set 
to estimated standard deviations of residuals. For the constructed index return series, we estimate the AR(1), ARMA(1,1), and ARFIMA(1,d,1) models. 
The procedure is repeated 1000 times. As in Table 2 ARMA(1,1) processes are generated using the estimated AR and MA parameters.
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Figure 1A  Histogram of AR Estimates of AR(1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.141 0.130 0.156 0.218 4.161

Figure 1B  Histogram of AR Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.425 0.770 0.631 -1.078 2.586

Figure 1C  Histogram of MA Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
-0.296 -0.580 0.601 0.918 2.325

Statistics of AR Estimates

Statistics of AR Estimates

Statistics of AR Estimates

0

100

200

300

400

-0.50 -0.25 0.00 0.25 0.50 0.75

0

40

80

120

160

200

240

280

320

360

-1.0 -0.5 0.0 0.5 1.0

0

50

100

150

200

250

-0.5 0.0 0.5 1.0



Figure 2  Frequency Count of Observations by Number of Months in Sample

 Mean Median  Std. Dev.  Skewness  Kurtosis
107.961 99.000 38.581 1.146 3.932

Statistics of months in sample
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Figure 3A  Histogram of AR Estimates of AR(1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.166 0.166 0.121 0.145 2.956

Figure 3B  Histogram of AR Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.675 0.830 0.435 -2.609 9.077

Figure 3C  Histogram of MA Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
-0.538 -0.670 0.414 2.261 7.710
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Figure 4A  Histogram of AR Estimates of AR(1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.181 0.173 0.112 0.328 2.981
0.156 0.150 0.166 0.051 2.961

Figure 4B  Histogram of AR Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
0.797 0.840 0.163 -2.166 8.551
0.449 0.609 0.463 -1.156 3.447

Figure 4C  Histogram of MA Estimates of ARMA(1,1) Process

 Mean Median  Std. Dev.  Skewness  Kurtosis
-0.647 -0.700 0.200 1.572 6.370
-0.301 -0.413 0.458 0.963 3.094
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