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Abstract 
 
Property cycle study is a popular topic in the current real estate literature, particularly 
when the market is near the peak or in low ebb.  In this study, some of the stylized 
facts of the Hong Kong property cycle will be examined and high frequency (monthly) 
data, partly public and partly proprietary, will be used.   
 
Spectral analysis, uni-variate and bi-variate, will be employed to investigate individual 
cycle and co-movements of two different cycles respectively.  Aperiodic movements 
of price, rental and total returns for various segments of the real estate market of Hong 
Kong are found.  This result could have important implication for the investors who 
are thinking of investing in real estate: on an investment horizon of several years, they 
can buy near the trough and sell near the peak. 
 
Co-movements of the direct (various segments) and indirect real estate are also 
investigated and it is found that residential market is the one that carries the greatest 
coherence with the indirect market.  Retail and office market follow in the pack and 
the industrial market is least coherent one.   
 
Key words: Hong Kong property cycle, spectral analysis, co-movement 
 
 
Introduction 

The study of property cycle has cropped up from time to time and the pressure for its 
study is most intense when the property market is in low ebb.  When the market is in 
the upswing, most market participant(s) would wish the market to continue its current 
course and any idea that the trend may be reversed would against the wishes of the 
crowd.  The hope that a cycle exists is strongest when the market is at or near its 
lowest, normally when the market sentiment is of utmost pessimism.  In the western 
world, the outcry for the study of property market was loudest after the crashes of 
property market in the early seventies and the early nineties.  The importance of the 
study of property cycle can obviously not be underestimated. It has direct linkage to 
the well being of both individual and institutional investors. If an investor can have a 
reasonably good feel of the market trend, he/she can then practice the obvious 
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investment strategy of ‘buying low and selling high’.  On the defense side, the 
understanding and awareness of the existence of property cycle can certainly alert one 
from imminent property crash which happened from time to time in property history.  
The RICS report on “Understanding the Property Cycle” (1994) was dedicated “to all 
those who saw their jobs destroyed, or their livelihoods blighted, by the property crash 
of the early 1990s” clearly demonstrated that is the case.  From the perspective of 
government policy, the intention of reducing the degree of swing (volatility) of the 
property market is certainly great especially when the housing market is at stake as that 
would affect the support received by government.  Pattie (1995) has found that “…the 
failure of the housing market was a factor in reducing support for the government.  
Negative equity is identified as a particularly important problem in this regard.”  
Similar situation happened in Hong Kong after the Asian Financial Crisis and Tung’s 
administration was and is still being accused of causing the widespread negative equity 
housing problem in Hong Kong as a result of his notorious 85,000 housing units per 
annum policy. 

 

I. Literature Review 
The study of property cycles has a long history.  The first known study was made by 
Hoyt (1933), on the real estate market of Chicago, U.S. for the one hundred years prior 
to 1933.  In the United Kingdom, the study on property cycle went back to 1921.  In 
RICS research report (1999), it used “a new history of property returns stretching back 
to 1921 to examine key features of property performance: its cyclical characteristics, 
links between property and economic cycles, and comparisons with the returns 
produced by other assets …”  
 
Let us start off the review process with definition of property cycle.  Very few current 
literature pay attention to this, presumably most property cycle researchers take this 
matter trivial and consider an intuitive definition will do.  In RICS report on 
“Understanding the Property Cycle” (1994), it draws analogy with the study of 
business cycle and offers the following similar but slightly modified definition: 
“Property cycles are recurrent but irregular fluctuations in the rate of all-property total 
return, which are also apparent in many other indicators of property activity, but with 
varying leads and lags against the all-property cycle.”  This is by far the most concise 
definition proposed.  It is noted that in this definition it is the ‘total return’ derived 
from property that counts.   
 
Previous studies were primarily concerned with answering a number of research 
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questions.  First, is there a property cycle for certain segment of real estate in certain 
country or place?  Secondly, if property cycle exists, what are the causes for its 
existence?  Thirdly, what are the phases of and accompanying characteristics of 
property cycle?  Fourthly, what are the relationships of property cycle observed with 
business cycle or other economic cycles, i.e. the co-cycle study? Fifthly, can one 
construct early warning indicator(s) which could correctly identify the turning points 
of the property cycle and hence lead to better investment decision?  Sixthly, can one 
develop a trading strategy by making use of the ‘identified’ early warning indicator(s) 
to exploit excess return from the real estate market?  Seventhly, would the market 
conditions of one place or property type transmitted to other places, both regionally or 
nationally, or to other property type?   A review of the current literature revealed that 
most of the researchers attempted to answer the above questions in an empirical way 
with the assistance of contemporary econometric methods.  Theorizing the empirical 
findings seems still in an early stage.   
 
A number of researchers work in the area of ‘stylized facts’ of the property cycle and 
co-cycles studies.  Wilson and Okunev (1999) used “conventional spectral analysis 
techniques to examine property and financial assets for evidence of cycles and 
co-cycles”, wherein securitized property index (price) series data from USA, the UK 
and Australia were employed.  Although the study lent support to the existence of 
cyclical patterns in individual series “… the variance at the identified cycle length was 
not large, generally of the order of 10 per cent of series variances … One implication 
of this is that the very pronounced cyclical patterns that appear in direct real estate 
markets and the economy as a whole are very much less obvious once they have 
filtered through to securitized property markets and financial assets markets.”  The 
correlation of the stock market indexes and the respective securitized property index 
series are then studied by co-spectral analysis. Although “the co-spectral analysis for 
the various financial assets series offered some support for the existence of co-cycles, 
the co-variance of the price series was again of the order of 9 to 10 per cent of the 
overall series co-variance. 
 
Brown and Kim (2001) made use of the same analytical technique on Singapore price 
series data.  Their study indicated that the prices for the commercial real estate and 
property stock exhibit cyclical patterns respectively.  Their study also looked at “the 
cyclical interactions between commercial real estate and property stock market…”, i.e. 
they were interested in the relationship between direct (un-securitized) and indirect 
(securitized) real estate market rather than the correlation between the economy and 
the real estate market at large as Wilson and Okunev did.  They found that “the 
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individual spectra indicate that the prices for the commercial real estate and property 
stock exhibit cyclical patterns …Evidence from the coherency and cross-amplitude 
spectra suggests significant price co-movement between the two markets in the long 
run…” 
 
Wang (2003) ‘examines cycles and common cycles in property and related sectors in 
the frequency domain’ and employs spectral analysis as its tool too.  ‘The findings 
indicate that property shares common cycles with a number of economic sectors and, 
in particular, with those sectors that are the user markets of property…The property 
market swings more severely than the economy as a whole.  However, fluctuations in 
the property market are considered moderate relative to those in the housing market.’  
 
In this study, we will look at some of the stylized facts related to the various segments 
of the Hong Kong property market. 
 
 
II. Methodology 
 
The development of time series analysis comes from two directions.  Statisticians 
develop from the side of making statistical inferences based upon the least squares or 
maximum likelihood theory, the ‘correlation’ or time domain approach.  
Communication engineers, on the other hand, try to look at the frequency composition 
of ‘signal(s)’ and are concerned with the ‘spectra’ of the signal(s) or frequency domain 
approach.  
 
For time domain analysis, we normally have to handle stochastic process and an 
important class of stochastic processes is stationary process.  A time series is said to 
be strictly stationary if the joint distribution of X(t1), …, X(tn) is the same as the joint 
distribution of X(t1 +τ), …, X(tn +τ) for all t1, t2, …, tn, τ.  In other words, the joint 
distribution depends only on the intervals between t1, t2… tn.  The said definition 
holds for all n values.  If n = 2, the auto-covariance function γ (t1, t2) depends only on 
t2 – t1 and can be written as γ (τ) and γ (τ) = Cov [X (t), X (t + τ)] is called the 
auto-covariance coefficient at lag τ.  If we normalize the auto-covariance function by 
γ (0), we have the so called auto-correlation function (ACF) ρ (τ) =γ (τ)/ γ (0) which 
measures the correlation between X (t) and X (t+ τ).  The corresponding sample terms 
for auto-covariance function and auto-correlation function are called auto-covariance 
coefficient (ck) and auto-correlation coefficient (rk) respectively.  The plot of 
auto-correlation coefficients (rk) against k (lag) is a graph called correlogram which is 



 5

useful for making a first guess on the appropriate model for the underlying process.  
This is because different known models such as AR, MA, ARMA or ARIMA exhibit 
distinct pattern for ACF.  At times, PACF (partial auto-correlation function) may have 
to be employed when sharper discrimination of models has to be made.  ρkk measures 
correlation between observations that are k periods apart after controlling for 
correlations at intermediate lags, i.e. lags less than k.  Inference made based upon the 
interpreting the correlogram, with the assistance of ACF and PACF, so as to identify 
what type of ARIMA model gives the best representation of the an observed time 
series, is normally called time domain analysis for the case of single equation 
modeling.  For the case of single equation modeling, Box-Jenkins procedure is 
normally followed to make forecasts.  For the case of simultaneous equation 
modeling in the time domain analysis, we have the VAR (vector auto-regression) 
method instead. 
 
Spectral analysis may sound veer initially, but it can actually relate to daily life.  
When we look at some mono-chromatic (single color) light source, we will feel the 
‘strength’ and the ‘color’ of it.  The color of the light source reflects the frequency of 
the light emitting from the source.  In this instance, our eyes behave as crude 
‘spectrometer’, namely, a meter for measuring ‘spectra’.  In simple terms, it can 
differentiate different ‘color’ of light. When the light source emitting white light, our 
eyes, due to its crudeness, cannot see the different ‘colors’ contained in it.  We need 
some other better tools to help use the see the frequency composition of it.  We need a 
prism!  Spectral analysis plays the role of a prism when we try to look at the 
frequency composition of a time series.   
 
Analysis of a time series would naturally require the decomposition of the same into 
trend, seasonal, cyclical and residual components. The first obvious way of analyzing 
time series data is to look at the plotted diagram of the same.  For an experienced eye, 
it may see whether an obvious trend exists or not.  If it does, the data has to be 
de-trended first before further analysis.  There are a number of de-trending techniques; 
the common ones are first differencing, second-order (or even third-order) polynomial 
regression or Hodrick-Prescott filtering.  It should be noted that the de-trending 
procedure is equivalent to putting the data through a (linear) filter which may affect the 
frequency characteristic of the original time series.  We have both low band and high 
band filters which have the property of allowing low frequency and high frequency 
component to pass through more easily.  The residual series after de-trending would 
be the one that has subject to spectral analysis, testing for the existence of cycles. 
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General outline of both analysis are as follows.  For uni-variate spectral analysis, we 
assume that the realization of the underlying data generating process, which may be 
deterministic or stochastic in nature, can be adequately represented as a sum of 
sinusoidal oscillation of different amplitude and related frequencies, i.e. the realization 
is a combination of sinusoidal functions of different but somehow related frequencies.  
The analysis of the data of the underlying generating process by frequency is said to be 
analysis in the frequency domain.  This is in contrast to the study of auto-covariance 
function etc. of the original time series in the time domain. 
 
Uni-variate analysis 
By Wiener-Khintchine theorem, any stationary stochastic process with autocovariance 
function γ (k), there exists a monotonically increasing function F(ω) such that  
 

γ(k)=∫0πcosωk dF(ω)   (2) 
 

Equation (2) is called the spectral representation of the auto-covariance function.  F 
(ω) has an important physical interpretation:  it is the contribution to the variance of 
the series which is accounted for by frequencies in the range (0, ω).   
    
If we use f (ω) (assuming it exists) to denote the derivative of F (ω), i.e.  

     d F(ω) 

f (ω) = -- -------- 

 dω 
then we have come up with a very important function for spectral analysis.  It is the 
(power) spectral density function or shortened to ‘spectrum’.  Equation (2) can then 
be rewritten as: 

γ(k)=∫0πcosωk f (ω) dω   (3) 
 

The physical meaning of the spectrum is that f (ω) dω represents that contribution to 
variance of components with frequencies in the interval (ω, ω+dω).  Equation (3) 
expresses(k) in terms of f (ω) as a cosine transform.   The inverse relationship is 
given by             ∞ 

f (ω) = 1/πΣγ(k) e-iωk 

k=-∞ 
 
The spectrum is thus the Fourier transform (see Appendix 1) of the auto-covariance 
function.  Spectrum is normally estimated by periodogram, the definition of which is 
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at appendix 2.  However, the periodogram is deficient in the fact that it is not a 
consistent estimator of spectral density function although it is asymptotically unbiased.  
This means that as N goes to infinity, the variance of I (ω) does not go to zero.   
 
In order to have a consistent estimate of the (power) spectral density function, one has 
to go through some sort of smoothing procedure.  It is noted that the periodogram is 
the discrete Fourier transform of the complete sample auto-covariance function.  An 
estimate of the following form would normally be used. 
     M 
f� (ω) = 1/π {λoco + 2 Σ λkck cosωk}  
    k=1 
 
where {λk} are a set of weights called the lag window and M is called the truncation 
point.  Different types of window are developed such as Tukey, Parzen, and Hanning 
etc.    
 
Bi-variate process 
When we want to look at the relationship between two time series, we have bivariate 
processes to deal with.  There are two different types of situation for it.  In the first 
situation, the two series arises on the equal footing with the possibility that both arise 
from the same underlying disturbances.  On the other hand, one of the series is 
regarded as the input whereas the remaining one the output of a linear system, in the 
case of second situation.  The first type can be said as the equivalent of correlation 
whereas the second type that of regression. 
 
Suppose we have N observations for two different series {xt} and {yt} at unit time 
intervals over the same period.  The observations may be denoted by (x1, y1), … , (xN, 
yN).  These observations may then regard as a realization of a discrete bivariate 
process (Xt, Yt).  Similar to the univariate case, we have up to second order moments 
i.e. mean and auto-covariance function for each of the two components.   In addition, 
we have a new function called the cross-covariance function, given by: 
 

γxy(t, k) = Cov (Xt, Yt+k) 
 
The complementary function in the frequency domain is called cross spectral density 
function or cross-spectrum.  Similar to the uni-variate case, the cross-spectrum of a 
discrete bivariate process measured at unit intervals of time as the Fourier transform of 
the cross-covariance function is defined as: 
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fxy (ω) = 1/2π[Σγxy(k) e-iωk] 

 
over the range of (0, π).  It is observed that fxy (ω) is a complex function and the 
inverse relationship is  

γxy(k) = ∫-ππe-iωk fxy (ω)  dω 
 

To give a proper interpretation of the cross-spectrum, let us look at both the real and 
imaginary part of it.  The real part of the cross-spectrum is called the co-spectrum 
and is given by: 

c(ω) =1/π[Σγxy(k) cosωk] 
 

The imaginary part of the cross-spectrum, with a minus sign, is called the quadrature 
spectrum and is given by: 

q(ω) = 1/π[Σγxy(k) sinωk] 
and fxy (ω) = c(ω) – i q(ω) 

 
Another function derived from the cross-spectrum is the (squared) coherency, which is 
given by: 

C(ω) = [c2(ω) + q2(ω)]/[fx(ω) fy(ω)] 
=αxy 2(ω)/ fx(ω) fy(ω) 

 
where fx(ω),  fy(ω) are the power spectra of the individual processes.  It can be shown 
that  0�C(ω) � 1 and it measures that square of the linear correlation between the two 
components of the bivariate process at frequency ω.  It is therefore analogous to the 
square of the usual correlation coefficient.  This property makes it suitable for the 
measurement of the co-movement of the components of the bi-variate process.   
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III. Data 
 
Hong Kong property market is enriched by a wealth of data.  In this study, we will use 
the monthly data (since January 93) published by the Rating and Valuation department 
(RVD) of Hong Kong SAR government.  As the RVD published only quarterly data 
prior to January 1993, monthly data prior to the said date was obtained by interpolation.  
The database of RVD covers both price index, rental index and yield level. By 
combining the price index and rental index provided by the RVD, we manage to 
construct a total return index series for various real estate market segments. 
 
We have another set of monthly data on price obtained by repeated sales method based 
on the seminal paper of Bailey (1985).  This set of data is proprietary in nature and 
was constructed by extracting actual transaction details from land registry since the 
beginning of 1970s.  Due the relatively low volume of transactions, the volatility of 
the variance of the price data was greater in the early 1970 and became smaller when 
number of transactions collected for calculation was larger at a later time.  
 
The natural logarithms of the price series were first subject to Hodrick-Prescott 
filtering in order to remove the trend element before they were put up for testing of the 
existence of cyclical elements by spectral analysis.  All the series: price, rental and 
total return series, were tested for their respective stationarity at 10% significance level.  
As a matter of fact, some of them even met 1% significance test.    
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IV. Results 
 
5.1 Single cycle movement 
By looking at the price indexes (and their smoothed trends) of the various market 
segments of the property market of Hong Kong at Figure 1, we observed that they do 
undergo upswing and downswing period.  This provides prima facie evidence for the 
existence of cyclical phenomena for the property market. 
 
In order to check the cyclicality of the price movements, we apply the HP filter to 
de-trend the time series and then apply spectral analysis to the price series to obtain the 
relevant spectra.  The spectral diagrams in Figure 2 leads us to believe that there are 
indeed cycles for the various segments: residential, retail and office are of 36 months, 
36 months and 50 months respectively.  However, there is no clear identifiable cycle 
for the industrial segment.  It is speculated that this may due to the continued 
declining demand for industrial properties in Hong Kong as most of, if not all, 
industrial undertakings move to the mainland. 
 
We also looked at the cyclical movements of rentals of various market segments.  The 
rental data we have are current ones and not those reserved on the lease and hence 
provided good indication on rental market conditions at different times.  The rental 
market is different from the sale market (investment market) in the sense that it 
predominately reflects the occupier market conditions.  The rental markets for the 
various market segments do exhibit cycles of approximately the same lengths of 4 
years as shown in Figure 3.   
 
The total returns series of the various market segments, checked to be stationary series, 
were also subject to the spectral analysis.  The resultant periodograms were in Figure 
4.  It is noted that for all market segments, some kind of 4 years cycle was observed.   
 
 
5.2 Co-cycle movements  
As regards to the co-movement of direct and indirect real estate, we are primarily 
concerned with the price movement of direct real estate, as measured by the price 
indexes of the various market segments, and indirect real estate, as proxy by Hang 
Sang Property Indices (HSPI). 
 
Co-movement tests were conducted to see the correlation relationship between the 
various real estate market segments and HSPI and the results are shown in Figure 5.  
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It is observed that the residential real estate segment has the greatest coherence value 
with the HSPI, followed by the retail and office segment and industrial is the least 
coherent one.  It is speculated that this may due to the relative weightings of 
investments / developments placed by the property companies forming the HSPI on the 
different market segments. 
 
 
 
V. Conclusions and future research directions 
 
In our study, we found that cycles do exist in the various real estate market segments in 
Hong Kong.  This observation will provide opportunity for real estate investors, with 
investment horizons of several years, to reap excessive profit.  They could have the 
opportunity of buying near the bottom of and sell close to the peak of the market.  
This is somewhat in contradiction with the Efficient Market Hypothesis.  However, 
recent finance literature revealed that EMH tested on short term data and long run data 
would provide different results and it is possible that even the stock market would 
exhibit inefficiency on the long run data of say 5 years. It is therefore worthwhile to 
borrow latest research findings of equity market, both theoretical and experimental, to 
the real estate market.  
 
Our study covers also the co-movement of the direct real estate, as measured by the 
price indexes of the various real estate market segments, with the indirect real estate, 
proxy by the HSPI.  We found that residential market segment bears the greatest 
coherence with the indirect investment, followed by the retail and office market 
segments, and with the industrial comes last.    
 
 
 
 
 
  
 



 12

FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 ( Total Returns) 
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FIGURE 5 
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Appendix 
 
 

 
FOURIER TRANSFORM 
 
Continuous Fourier Transform 
Given a function h (t) of a real variable t, the Fourier transform of h (t) can be defined as 

H (ω) = ∫-∞-
+∞h (t) e-iωt dt    (1) 

 
provided the integral exists for every real ω.   
 
A sufficient condition for H (ω) to exist is  

∫-∞+∞�h (t) �dt < ∞ 
 

If (1) is regarded as an integral equation for h(t) given H(ω), then a simple inversion 
formula exists of the form  
 

h (t) = 1/2π∫-∞+∞H (ω) eiωt dω   (2) 
 
and h (t) is called the Fourier transform of H (ω). 
 
 
Discrete Fourier Transform 
In time series, we commonly use the discrete form of the Fourier transform when h (t) is 
only defined for integer values of t.   Then we have:  
       ∞ 

H (ω) = Σ h (t) e-iωt   -π≤ω≤π 
       -∞ 
is the Fourier transform of h(t).  Note that H (ω) is defined only in the interval [-π, π].  
The inverse Fourier transform is given by: 

h(t) = 1/2π∫-ππ H (ω) eiωt dω 


