

Check for updates

# The influence of rapid rail systems on office values: A case study on South Africa

Douw G. B. Boshoff 🕩

Department of Construction Economics, University of Pretoria, Pretoria, South Africa

#### ABSTRACT

This study identifies the influence of rapid rail systems on property values, with a focus on office buildings in South Africa. It is based on a limited sample of office properties, analysed using MRA to investigate pre-implementation values and rent to post-implementation data. It attempts to confirm if distance from the train stations influences these variables. Evidence is found that distance from the station does have a positive impact on rental levels and property values. The limited data-set, however, causes inadequate levels of statistical significance in some variables, arguably due to the small sample or model specification error due to information availability for research. The positive influence of rapid rail systems found on office values has important implications for property investors, developers, financiers and taxing authorities. This is important amidst a period of extension planning, whereby this research could provide useful information for decision-making and analysis and offers a valuable contribution to the methods to measure the impact of rapid rail systems on property values, although currently limited to office buildings. Furthermore, this research is contributing to the body of knowledge, especially in developing markets, where advanced public transport systems need to be implemented for the first time.

#### **ARTICLE HISTORY**

Received 31 August 2016 Accepted 1 September 2017

#### **KEYWORDS**

Rapid rail systems; property values; urban development; Gautrain; multiple regression analysis

# Introduction

Rapid rail stations offer the potential for the development of higher order nodes around these stations and the incorporation of the physical characteristics promoted in most of the planning concepts that deals with the development of nodes. However, not all stations have the same potential for development, as the local conditions and the physical context in which these stations are located differ extensively.

South Africa has only recently implemented its first urban rapid rail system, the Gautrain, linking the two largest cities in the country, Johannesburg and Pretoria, forming the economic hub of the country, which are now also being investigated for the economic viability of extension of the rail system. This research attempts to shed some light on the influence of the rail system on property values, with specific reference to office buildings and proposes the methodology to undertake such an investigation. The problematic nature of such an

analysis is to distinguish between the causal relationship of growth in particular areas due to factors other than the construction of the rail system, causing such nodes to be the ideal location for rail stations, or to confirm that the construction of the rail system and choice of station locations had indeed an impact on the growth in these areas. Implications of this research is that if a positive impact on property values could be confirmed, it provides increased property tax backed by the increased property values, which could be a source of funding for implementation, as well as strategic decision-making advice to property developers, investors and financiers.

# Methodology

The Gautrain in South Africa was implemented during 2010. The study was initiated by the Gautrain Management Agency (GMA), as part of the planning for extensions to the first phase of the rapid rail system in South Africa. The research is limited to testing the hypothesis if an influence is present or not, rather than quantifying a detailed level of impact per se. The method to analyse this, is by investigating a sample of pre-implementation data to post-implementation data. Due to the exploratory nature of this study, it was necessary to rely on publically available data and based on a limited data sample, in order to meet the constraints of the GMA support for this analysis. The aim is, however, to provide initial results that can lead to wider support for further, more detailed analysis.

From the above, the Null hypothesis can therefore be stated as:

$$PV \neq f$$
(Station access)

and the alternative hypothesis as:

$$PV = f(Station access)$$

where:

#### PV = Property value

If the null hypothesis that the property value is not a function of the access to the station, either being the distance from the station or the affirmation that it is within walking distance from the station or the bus serving each station, can be rejected, then the alternative hypothesis can be accepted that the property value is indeed a function of and therefore influenced by the distance or access to the station.

The data used for analysing the impact of this implementation, is the office portfolio along the Gautrain route and neighbouring townships, owned by the largest REIT in South Africa, Growthpoint Properties (Growthpoint). The whole Gautrain consists of 10 stations. All Gautrain stations where the particular REIT owns office buildings were included, resulting in six stations included, three stations excluded due to no property ownership in the vicinity and one station which only services the airport. The selection of the sample is due to the higher level of information that is made publically available by Growthpoint than any of the other REITs in the country. The pre-implementation data used is the office portfolio owned by Growthpoint in 2008, which is two years earlier than the implementation of the Gautrain. During this period there was already planning under way, but little was known about the likelihood of success of the rail system and the exact implementation details, including methods of implementation and exact locations of the stations and the rail route itself. Due to this uncertainty, it is expected that little investment decisions were based on the implementation of the rail system itself, but rather on other value forming attributes and principles. The portfolio of properties included in the pre-implementation analysis is a total of 69. The post-implementation data is the office portfolio owned by Growthpoint during 2015, which is the most recent information available at the time of the research and consisted of 41 properties. The different number of properties at the two time periods were specifically chosen as such to also determine how the portfolio change affected the results, especially in determining the effect of the properties that were disposed of.

The pre- and post-implementation data allows to perform a regression analysis on the value forming attributes of the Growthpoint office portfolio in the nodes where the Gautrain stations were built. As mentioned earlier, due to the exploratory nature of this research, limited value forming data is available and reliance on publically available data allowed for only using three categories of variables, being location in terms of the node of each station on the route and the distance from the station, type of office building and the capitalisation rate as an indication of the perceived risk of the building. These three categories were used as independent variables by also splitting them into different actual variables, i.e. location being the node indicated by a dummy variable for each node, the distance from the station, and a dummy variable to indicate the building to be within walking distance from the bus or station, while building type is split into separate dummy variables to indicate which type of building it is.

In order to test the hypothesis, various multiple regressions were performed, using different dependent variables. In principle, the Total Property Value can be increased by either increasing the value/m<sup>2</sup> or by increasing the size of the building (GLA). The former is also influenced by the rental rate achieved. The GLA, value/m<sup>2</sup>, rent/m<sup>2</sup> per month and Total Value as dependent variables are tested by considering the 2008 data, 2015 data and the growth from 2008 to 2015. The influence on the value/m<sup>2</sup> is tested in order to evaluate if access to the station creates additional value, but excluding value that is created by expansion of any buildings, and also reduces the variance in the dependent variable that is caused by the different sized buildings. Testing the rent has the same aim, but further excludes the impact of value changes due to changes in the capitalisation rate. In a similar way, the GLA is tested in order to evaluate if access to the station is influential on a decision to expand a building. The total value is then tested to combine the effects of both these dependent variables and measure the total impact.

#### Literature review

Various studies were found that explain the general influence of transport systems on property values. Most studies motivate the influence on property values as a means of value capture in order to finance transport development systems. Enoch, Potter, and Ison (2005) investigated the methods for funding public transport investment from specifically property owners and developers. It was found that a number of options exist, which include taxes and charges, partnership deals and endowment. The study found that taxes are the most reliable source of funding, with specific reference to property tax. It is therefore imperative that the influence of the transport infrastructure on property values be considered carefully. Ubbels and Nijkamp (2002) reported on various unconventional financing schemes for transport systems. Included in these are the funding by way of property taxation that could take the 270 🕒 D. G. B. BOSHOFF

form of higher property tax due to the increase in values based on better accessibility or better business opportunities, as well as developer levies that are charged based on redevelopment of properties in the proximity of the transport infrastructure being installed. They also point out that unconventional funding schemes are highly reliant on acceptability by the payers thereof that they are indeed benefited by the development of the transport system.

Banister and Thurstain-Goodwin (2011) considered the non-transport benefits resulting from rail investment. According to the study, traditional methods of valuation haven't been successful in accounting for non-transport benefits. This is important because it is increasingly found that transport investment cannot be justified by transport terms alone. Banister and Thurstain-Goodwin explains the factors to be considered at macro, meso and micro level, with the latter being referred to as the effects of land and property market effects that should be taken into consideration. Banister and Thurstain-Goodwin mentioned seven key factors that should be considered for evaluating the effect of transport on land and property values:

# Location

The effects of specific locations was found to be difficult and had mixed results from previous studies. It was stated that it is imperative to consider the whole corridor, rather than just specific points or individual stops and stations.

# Time

The effect of the transport investment would be different at different time-intervals relating to the development. It was noted that the points in time to consider in order to accurately measure the effect on the land and property values is; before a decision to develop was taken; before opening; directly after opening; and downstream.

# **Catchment areas**

It was found that the impact on residential properties was wider than the impact on commercial development, with an up to 2½ times wider catchment area for residential properties, and is related to the distance people are prepared to walk (AtisReal, the Bartlett School of Planning & the Symonds Group, 2002). It was, however, found that values of residential properties might be depressed during the construction phase of the transport due to higher noise or crime levels (Bowes & Ihlanfeldt, 2001).

# Scale of investment

It was found that smaller investments mainly affect accessibility and that larger investments have an impact on the property market (Colin Buchanan & Partners, 2003). According to Cervero and Duncan (2002) it is useful to do an accessibility analysis in order to determine the effect of accessibility on property values.

# **Attribution of impacts**

The effects of different variables and the attribution thereof are found to be different for different situations. A vibrant market will for example be affected differently from a location with less advantageous economic conditions. The effects of the property market cycle should also be controlled for when considering time effects. It is suggested that a wider range of measures should be considered, such as changes in accessibility, ownership patterns, site consolidations, number of transactions and yields, as well as composite measures such as density of development.

# **Methods used**

The most preferred method is found to be hedonic pricing (HP). The main difficulty with HP is the way it handles spatial data. It is noted that a more spatially sensitive approach would be the use of a Geographically Weighted Regression (GWR) within a hedonic framework.

# Data

Data availability is found to be the crucial element of successful measurement. It is suggested that actual property transactions that took place within a 1000 m threshold are taken into consideration, but that there are often confidentiality constraints in the use of this.

Wrigley, Wyatt and Lane (2001), in a literature review of transport policy and property values, report that a study that investigates the impact of transport systems on property values should include:

- More than one transport system in order to capture modal split and shift
- More than one land use which could capture land use change and control for collinearity
- Longitudinal analysis rather than cross-sectional in order to control effects of anticipation and reality
- Intra-urban and regional scales to control for agglomeration effects
- A combination of area dummy variables and proximity variables
- Controlling factors for the effect of size on the explanatory power of residential property values.

Studies that specifically investigated the influence on property values, reported that accessibility and changes in land use patterns are mostly responsible for positive influences, while disruptive effects during construction, noise, increased crime levels and other social attributes might be responsible for negative impacts. Henneberry (1998) links the relationship of property value and location to accessibility. The time and cost of travel to other locations has an impact on the physical accessibility aspect of property. The investment in transport infrastructure affects the accessibility of property and due to this change a secondary influence on property values due to intensified property investment and subsequent land use changes occur. Henneberry also warns against the influence of other factors on property values which might cause difficulty in identifying the discrete impact of transport investment on property values. It is indicated that a hedonic model resolves this and can provide the influence of a single attribute on property values. In order to obtain accurate data, the different sources of data identified are actual transaction prices, asking prices by agents and actual valuations by professional valuers. Although the different sources are debatable in terms of actual indication of market activity, it was found that each offers specific profound benefits, such as asking prices that is not necessarily an indication of the true value or transaction prices that are reflected, it is normally associated with better individual attributes that are made available, allowing for more accurate analysis. The study found that prices were negatively affected before construction of the tram system in Sheffield, possibly due to the anticipation of disruptive effects during construction, but the negative impact disappeared after completion of construction. It could, however, not be confirmed that there is a positive effect on house prices, due to the study only being conducted four months after completion and it could be that the effects are not fully appreciated by homeowners yet. Gibbons and Machin (2005) on the other hand found a significant relationship between house prices and the distance to the nearest train station based on a study of new stations to be constructed to the tube system in London. They link the increase in price to the travel time value, which is based on the average commuter's hourly wage compared to the cost of travelling.

Bae, Jun, and Park (2003) investigated the effect of the installation of a sub-way line on residential property values in Seoul, Korea. It was found that anticipation effects were observed, but it vanished after opening of the line. This might be due to the fact that Seoul had various means of transport available and the extra line does not add much to the overall public transport availability. Bowes and Ihlanfeldt (2001) also confirms the positive effect of rail stations on residential property values due to reduced commuting costs and increased retail activity brought to the neighbourhood, but that these positive factors are offset by the negative impact due to crime as a result of accessibility of criminals to the neighbourhood. This is, however, dependant on the distance from the CBD and the median income of households, with high income areas close to the CBD being at the largest negative impact scale. Zamparini and Reggiani (2007) investigated the value of travel time savings, linking the willingness of passengers to pay for savings and convenience of better transport and found that a remarkable higher value is observed in Europe than in North America or Australasia. This emphasises the difference of the specific country of application and such local factors on the final influence that is experienced.

Geurs, Haaijer, and Van Wee (2006) investigated transport option values in the Netherlands that can be interpreted with regard to the risk premium that individuals with uncertain demand are willing to pay due to the availability of a transport facility which is over and above their expected user benefit. This provides the additional frame of thought that installation of additional modes of transport provides the option of using that and makes areas accessible to commuters that might have not being able to reach these destinations before. The result might be that there is a change in spatial segregation, as well as potential alternative land use.

According to Munoz-Raskin (2010), middle income housing in Bogota, Colombia were most affected by immediate proximity to the BRT system. The mobility burden for the poorest was, however, found not to be solved, due to the cost of the BRT transportation, although faster, generally being more expensive than other modes of transport. This is further aggravated by the general tendency to increase rent in the proximity of BRT stations, causing the poorest to have to move to cheaper locations, as reported by the World Bank (2007) and Transmilenio (2007). It was further found by Munoz-Raskin that there is a potential negative effect on high-income housing, due to the nuisance perception associated to the proximity to transport corridors. It is specifically pointed out that the impact of such systems cannot be generalised over all properties, but must be treated as case-specific. Hedonic modelling in urban settings in non-industrialised countries is said to be treated with caution, as it is very different to the circumstances of developed countries where most previous research of this nature is performed. Rodríguez and Mojica (2009) performed a before and after regression of the property values in Bogota, Colombia in order to measure the effect of the BRT expansion. They also found an increase, with 13 to 14% measured after the BRT was extended and similar valued anticipation effects on the property values prior to installation of the BRT. The study, however, does not discriminate between different types of property or levels of income.

Jun (2012) found that the redistributive effects of the BRT system in Seoul, Korea was more apparent in non-residential properties than in residential properties. It was furthermore found that the CBD reaped the highest benefits, with lower benefits to the outer ring zones. So, Tse, and Ganesan (1997) report that the effect of transport on house prices in Hong Kong, where more than 90% of all people are making use of public transport (Hau, 1988) and more than 80% of motorised trips are undertaken in public transport (Meakin, 1994), is particularly evident in the middleclass and closely related to the mode of transport being used, which in this case is mostly affected by pick-up points of mini-bus taxis. In two older studies by Freeman (1979) and Rosen (1974), it was noted that hedonic pricing is applicable in order to determine housing values and the impact of different attributes such as accessibility on such values.

Studies that reported specific levels of influence reported mostly positive results. On a study of house price values in the Netherlands, Debrezion, Pels, and Rietveld (2011) found that dwellings close to train stations could be up to 25% more expensive than those at a distance of 15 kilometres or more. They report that a doubling of the frequency of trains have a positive effect that ranges between 2.5 and 3.5% for houses close to stations and 1.3% for house that are located far from the station. Finally they found a negative effect of the distance to the railway line, probably due to noise effects. Rodrigues and Targa (2004) reported on a study of the BRT system in Bogota, Colombia, that every 5 min of extra walking time to a BRT station, results in a rent decrease of between 6.8 and 9.3%. Doherty (2004) indicates a significant difference between the impact of transport on residential properties, with an increase of 5 to 10% and commercial properties, where an increase of between 10 and 30% is evident. Although the study by Doherty is mainly applied to fixed rail systems, they do not rule out the influence of other modes of transport on property values, due to the general increase in accessibility. Doherty states that in Australia there is evidence of increased values at all levels of household income.

From the literature, it is evident that most previous studies consider the influence of transport systems on house prices. This is particularly linked to the ability of commuters to reach their destinations, but does not take the impact of transport systems on the destination itself into consideration. This could largely be due to the difficulty in obtaining sufficient reliable data to rule out other influences and conclude on the impact of transport systems on non-residential property. Due to this shortcoming in other studies, this study is of particular importance due to the unique example in South Africa, where an entire new rapid rail system is implemented for the first time, enabling the analysis of pre- and post-implementation data.

### Analysis

#### **Pre-implementation results**

The first analysis on the pre-implementation data is a linear MRA of the gross lettable area (GLA) as dependent variable against the distance from the Gautrain station, a dummy variable to indicate if the property is within 500 m of a bus stop or within 1 km of the station (1) or not (0), three dummy variables for the type of building, where 1 is used as affirmative in either one of three types being an office park, high rise office or low rise office, six dummy variables for location, where 1 is used as affirmative to indicate the location as being either Hatfield, Centurion, Midrand, Sandton, Rosebank or Park station and lastly the capitalisation rate as determined by the rent divided by the value/m<sup>2</sup>. The reason for the choice of variables is to determine if the distance from the station locations had an influence of the size of office buildings in the particular locations. Due to unacceptable tolerance levels in the collinearity of the location variables, Sandton as the location with the most individual data points are excluded and was modelled independently. The results are therefore split to show the impact of all locations other than Sandton and the results for Sandton separately. This is the case for all results to follow using other dependant variables as well.

The results of the analysis are provided in the tables at the end of this paper under "Annexures". Annexure 1(a) is the results of the GLA in 2008 with an adjusted  $R^2$  of .123, indicating that only 12.3% of the variability in the GLA is explained by the model. The *F*-value of 1.870 indicates a significance of .063, i.e. between 90 and 95% level of confidence. When considering the individual variables, Rosebank has the highest standardised  $\beta$  with a negative relationship to GLA, indicating that if a property is situated in Rosebank, it is likely to be smaller than other properties. Next to that is the distance to the Gautrain station, with a negative standardised  $\beta$  value of -.253, with the *t*-test indicating a significance for this variable of .141. This provides some evidence that if a property is further located from the station, it is likely to have a lower value. Annexure 1(b) provides similar statistics, but for properties situated in the Sandton node only. In this, high rise offices have the highest standardised  $\beta$ , which is expected as high rise office is usually larger than other types of buildings. The next variable is the distance from the station, albeit with a relationship that is less evident and significant than properties located in nodes at the other stations.

Annexures 1(c) and 1(d) indicates the results for the dependant variable "Total Value" and independent variables the same as in the previous test. In both these tables, the adjusted  $R^2$  is slightly higher and with a higher *F*-value, indicating an improved significance. This is, however, due to the variable for "High Rise Offices" that has the highest standardised  $\beta$ , which is expected to be high due to the bigger size of these offices having a higher value. The relationship of this variable is, however more prominent and with a higher significance in this case than when compared to size only, suggesting the influence of a higher value/ m<sup>2</sup>. In these two tables, a number of variables have higher standardised  $\beta$ s than the variable for distance from the station and also have better levels of significance. This suggests that in 2008, not much evidence exists that the distance from the station is influencing the total value of an office property.

In Annexures 1(e) and 1(f), the model explaining the dependant variable "value/m<sup>2</sup>" has an adjusted  $R^2$  of .301 and .327, respectively. Although only 30.1 and 32.7% of the variability in the value/m<sup>2</sup> is explained by these models, the f-test indicates a significance of .001 and .000 respectively, indicating a level of confidence in excess of 99% in both cases. It is, however, seen from the standardised  $\beta$ s and *t*-test, that distance from the station has very low scores with insignificant levels of confidence. In these tables, other variables, including the location or node, type of building and capitalisation rates are more prominent in explaining the variability in the value/m<sup>2</sup>.

Similar results than the previous paragraph are found in Annexures 1(g) and 1(h), where rent/m<sup>2</sup> is the dependant variable, but overall statistical significance and model specification is slightly weaker. It is, however, again seen that other variables explain the variability in rent, while distance from the station has low standardised  $\beta$ s and *t*-test scores, indicating insignificant statistical confidence.

In all of the above tests, the dummy variable indicating if a property is within a 500 m distance from a Gautrain bus-stop or within 1 km from the station, has very low standardised  $\beta$ s and *t*-test scores. This confirms irrelevance of this variable in overall model specification.

#### **Post-implementation results**

In Annexures 2(a) to 2(h), the data for 2015 property values and attributes are used. The overall model specification for GLA as noted in Annexures 2(a) and 2(b) is found to be highly insignificant, with very low *F*-values for the overall model and poor *t*-test scores on individual variables.

When considering Annexures 2(c) and 2(d), the overall model specification for total value is still problematic and found to be insignificant. The individual variables, however, indicates the distance from the train station to be the only variable to have *t*-test scores to indicate a confidence level in excess of 90%.

The analysis for value/m<sup>2</sup> as dependent variable as indicated by Annexures 2(e) and 2(f), has lower Adjusted  $R^2$  values and f-test results than the equivalent 2008 data, but when considering the individual variables, Distance from the station is in both cases very prominent variables. The standardised  $\beta$ s are above .5 in both cases, with a negative relationship, indicating that there is clear evidence that property values decline as the distance from the station increases. This is found to be the case with t-scores indicating a confidence level in both cases of approximately 99%.

Annexures 2(g) and 2(h) have slightly lower overall  $R^2$  values and *F*-values, but interesting have higher standardised  $\beta$ s in both cases, albeit at a slightly lower *t*-test score, than in the preceding test. It is, however, found to be the most significant variable in both cases, suggesting that the distance from the station must have an impact on office property values.

### **Growth results**

In the third set of tests, displayed in Annexures 3(a) to 3(f), the growth in values, value/ $m^2$  and rent is analysed. Office Parks were found to be the most significant in overall value growth in nodes other than Sandton, while the second most significant variable in these nodes and most significant in Sandton, is the distance from the station (refer Annexures 3(a) and 3(b)). It should be noted, however, that overall model specification indicates fairly low levels of confidence in estimating overall value.

The value/m<sup>2</sup> growth in nodes other than Sandton, as indicated in Annexure 3(c), were found to have the second most significant results of all tests conducted, with a  $R^2$  value of .302 and a *F*-value of 2.919, indicating a significance of .013. The variable with the highest

standardised  $\beta$  is the dummy variable indicating that a property is situated in Rosebank. From earlier discussions, it was indicated that Rosebank was typified by smaller properties prior to implementation of the Gautrain, while now it has the highest levels of growth/m<sup>2</sup>. Second in line is office parks and closely behind it is the distance from the train. The same model for Sandton properties does not have the same overall level of significance, but distance from the station is the only variable singled out to have a meaningful level of statistical confidence.

When considering rental levels, although the overall model is found largely insignificant, the distance from the station is again found to be the only variable with some level of statistical significance, as indicated in Annexures 3(e) and 3(f).

# **Findings**

A summary of the most important statistics is provided in Table 1. It is important to note that there is evidence of model specification errors that are visible in the low R squares, which is mostly due to the limitations mentioned previously, in that not all value forming attributes are considered at this stage. Working with the data at hand, it is evident that the R squares is almost throughout higher in the 2008 models than the 2015 models. It appears thus as if the earlier data is better explaining the various dependant variables. If one, however, consider the individual independent variables, the *Distance from Gautrain* variable had very low  $\beta$ s, with very low significance *p*-values. The stronger relationships were caused by variables other than the distance from the positions where the Gautrain would have been built two years later, as evident in Annexure 1.

|                           | Total<br>2008         | excl.   | Total<br>2008 : | Sand-  | Value<br>2008   | excl.            | Value<br>2008 9 | Sand-            | Rent<br>excl. S | Sand-  | Rent   |       |
|---------------------------|-----------------------|---------|-----------------|--------|-----------------|------------------|-----------------|------------------|-----------------|--------|--------|-------|
|                           | Sanc                  | lton    | to              | n      | Sanc            | lton             | to              | n                | to              | n      | Sanc   | lton  |
| Adj. R <sup>2</sup>       | .153                  |         | .190            |        | .301            |                  | .327            |                  | .255            |        | .247   |       |
| F                         | 2.119                 |         | 3.278           |        | 3.659           |                  | 5.722           |                  | 3.121           |        | 4.182  |       |
| Sig.                      | .033                  |         | .005            |        | .001            |                  | .000            |                  | .002            |        | .001   |       |
|                           | β                     | р       | β               | р      | β               | р                | β               | р                | β               | р      | β      | р     |
| Distance from<br>Gautrain | 178                   | .291    | 160             | .317   | 096             | .528             | 084             | .564             | 147             | .352   | 113    | .466  |
|                           | Total                 | /alue   | Total           | value  | Value           | e/m <sup>2</sup> | Value           | e/m <sup>2</sup> | Rent            | 2015   |        |       |
|                           | 2015 excl.<br>Sandton |         | 2015 Sa         | andton | 2015            | excl.            | 2015 Sa         | ndton            | excl. Sa        | indton | Rent   | 2015  |
|                           |                       |         |                 |        | Sand            | lton             |                 |                  |                 |        | Sand   | lton  |
| Adj. R <sup>2</sup>       | 119                   |         | 034             |        | Sandton<br>.123 | .157             | .172            |                  | .285            |        |        |       |
| F                         | .573                  |         | .779            |        | 1.563           |                  | 2.238           |                  | 1.665           |        | 3.122  |       |
| Sig.                      | .822                  |         | .592            |        | .166            |                  | .063            |                  | .153            |        | .019   |       |
|                           | β                     | р       | β               | р      | β               | р                | β               | р                | β               | р      | β      | р     |
| Distance from<br>Gautrain | 405                   | .091    | 374             | .095   | 555             | .011             | 599             | .004             | 653             | .016   | 665    | .007  |
|                           | Tota                  | l value | Total           | value  | Value           | $e/m^2$          | Value           | e/m <sup>2</sup> | Rent g          | rowth  |        |       |
|                           | growth                | excl.   | grov            | wth    | growt           | n excl.          | grov            | vth              | excl. Sa        |        | Rent g | rowth |
|                           | Sandtor               |         | Sand            |        | Sand            |                  | Sand            |                  |                 |        | Sand   |       |
| Adj. R <sup>2</sup>       | .108                  |         | .028            |        | .302            |                  | .013            |                  | .012            |        | .126   |       |
| F                         | 1.538                 |         | 1.234           |        | 2.919           |                  | 1.105           |                  | 1.044           |        | 1.927  |       |
| Sig.                      | .179                  |         | .314            |        | .013            |                  | .375            |                  | .437            |        | .123   |       |
|                           | β                     | р       | β               | р      | β               | р                | β               | р                | β               | р      | β      | р     |
| Distance from<br>Gautrain | 349                   | .067    | 366             | .059   | 343             | .044             | 343             | .079             | 350             | .124   | 343    | .100  |
|                           |                       |         |                 |        |                 |                  |                 |                  |                 |        |        |       |

#### Table 1. Summary of model statistics.

Source: Author.

In contrast, the 2015 values for the Distance from Gautrain variable had throughout all models the highest  $\beta$ s and most significant *p*-values. It is thus evident that the location relative to the stations' positions did not impact in 2008, but in 2015 a fairly strong impact is evident. An exception is the test if the distance from the stations had an impact on the GLA, i.e. was there a tendency to increase the size of the properties close to the station more than those further away by way of additions or redevelopment? Although the Distance from *Gautrain* variable still has the highest  $\beta$ s and significant *p*-values, the *p*-values are not very strong and would fail to reject the null hypothesis. The tests for the impact on the GLA are thus not included in Table 1, but the fact that it does indicate some form of relationship, warrants further research in this regard. A further observation is that rent has the best  $\beta$ and *p*-values compared to the other studies, followed by value/m<sup>2</sup> and then total value. This probably caused by the fact that the number of factors affecting these dependent variables, are more in the same order. The sample size, however is different for Rent than the other two due to information availability, which might also have an impact, but it still indicates the same observation of Distance from Gautrain has a higher impact than the other independent variables considered.

For tests performed on Value Growth, the value/m<sup>2</sup> growth for all properties not located close to Sandton, a fairly descriptive model is evident, as discussed in the previous section. It appears as if specific areas had significant growth after installation of the train. Particularly the area Rosebank is found to be such an example and in combination with the other variables that also show fairly significant *p*-values, an overall higher model result is seen. A more important observation is that all tests had very similar  $\beta$ s and *p*-values for *Distance from Gautrain*.

In order to formally accept or reject the Null-hypothesis, *Distance from Gautrain* as only independent variable is regressed against the various independent variables as shown in Table 2.

Only 2.6% of the variability in the total value of properties in 2015 is indicated to be explained by the distance from the Gautrain, at a level of confidence between 75% and 90%. This is considered as too low to confidently reject the Null hypothesis and there are additional factors that need to be considered. A similar situation applies for the total growth in values between 2008 and 2015, with 4.4% of the variability explained at the 90% level of confidence. This is considered moderately accurate, and partly rejects the Null hypothesis, indicating that there is a moderate indication that the distance from the Gautrain can be accepted to have an impact on the total value growth.

The variability in the 2015 value/ $m^2$  of properties are indicated to be explained 11.9% by the distance from the Gautrain and with a *p*-value of .015, it rejects the Null hypothesis above the 95% level of confidence, just failing to reject it at the 99% level. It is, however safe to say that there is a fairly high indication of impact. 7.8% Of the variability in the growth of

|                     | Total value<br>2015 | Value/m <sup>2</sup> 2015 | Rent 2015 | Total value<br>growth | Value/m <sup>2</sup><br>growth | Rent growth |
|---------------------|---------------------|---------------------------|-----------|-----------------------|--------------------------------|-------------|
| Adj. R <sup>2</sup> | .026                | .119                      | .250      | .044                  | .078                           | .187        |
| F                   | 2.084               | 6.415                     | 11.670    | 2.846                 | 4.388                          | 8.376       |
| Sig.                | .157                | .015                      | .002      | .100                  | .043                           | .007        |

Table 2. Regression with distance from Gautrain as only independent.

Source: Author.

the value/m<sup>2</sup> is explained by the distance from the Gautrain, at the 95% level of confidence. It therefore also rejects the Null hypothesis at a moderately high level and the alternative hypothesis can therefore be accepted that there is an impact on the value/m<sup>2</sup> of properties by the distance from a Gautrain station.

With rent, 25% of the variability in the 2015 rent and 18.7% in the variability of the growth in rent is explained by the distance from the Gautrain, both above the 99% level of confidence. The Null hypothesis that there is no impact by the Gautrain on property values can be rejected at a high level of confidence, in so far as rent has an impact on the income and thus the value of properties. The alternative hypothesis can therefore be accepted and it is evident that there is indeed an impact by the distance from a Gautrain station on property values.

#### **Summary**

From the analysis performed, it was found that the distance from the station had little, if any effect on the value of property prior to the implementation of the Gautrain rapid rail system. Five years after implementation, the distance from the station dominated various models as most significant or close thereto in predicting the levels of overall value, value/m<sup>2</sup> or rent/m<sup>2</sup>. It was furthermore also found that areas that were previously less attractive for investment purposes, now experience high levels of growth in values. The fact that distance from the station had very little effect on the determination of property or rental values, prior to implementation, but weighed heavily after implementation, is clear evidence that the null-hypothesis of no impact can be rejected.

The study is, however, limited by sample size, property type and information on value forming attributes, which if available, could enhance this research significantly, while it is currently lacking in terms of model specification and reliable hedonic model accuracy and significance. The study is nevertheless considered to show sufficient evidence of an impact of the Gautrain Rapid Rail system on office values, to warrant further research including more variables, property types and data points. In order to enable this, it would require support from industry players, such as property investors, developers, financiers and taxing authorities to make available information at their disposal, which could be included in such an analysis.

Further research could include extensive hedonic modelling, whereby value forming attributes are used as independent variables and similar other variables such as distance from the station, that can be included in order to compare the relevance of attributes pertaining to the rail system to other traditional value forming attributes.

The importance of the outcome of this research, as well as the necessity of new research, is to enable decision-making on the possible extension of the rapid rail system. The positive impact on property values have a direct and indirect impact on the economy due to the value capture nature of real estate. It furthermore provides property investors, developers and financiers with some insight into the impact on their investment and the prices that should be paid, where to invest and how much is warranted to finance. With a more detailed analysis, it would be possible not only to confirm the impact, but also measure and forecast such impact on future property values.

The unique contribution of this research is in the fact that similar testing like this in other countries, especially developed countries, are assuming that the population is accustomed

to public transport. In this study, the Gautrain construction is the first rapid rail system and pricing thereof is in a part of the population that is only accustomed to private transport. The success of implementation thereof was therefore very uncertain, but this research shows the success in terms of the value capture principles entrenched in property. This research is therefore a contribution, especially for developing countries that are considering investment in more advanced public transport. It is, however, limited in accurately testing the level of impact, and had as aim only to confirm or reject that an impact does exist.

#### **Disclosure statement**

No potential conflict of interest was reported by the author.

## ORCID

Douw G. B. Boshoff D http://orcid.org/0000-0001-7574-9751

# References

- AtisReal, the Bartlett School of Planning and the Symonds Group. (2002, November). Land value and public transport a review of the evidence stage 1. *Report for the RICS and ODPM*. Retrieved from http://www.rics.org/resources/research/land2.html
- Bae, C. H. C., Jun, M. J., & Park, H. (2003). The impact of Seoul's subway Line 5 on residential property values. *Transport Policy*, *10*, 85–94.
- Banister, D., & Thurstain-Goodwin, M. (2011). Quantification of the non-transport benefits resulting from rail investment. *Journal of Transport Geography*, 19, 212–223.
- Boarnet, M. G. (2007). Conducting impact evaluations in urban transport. *World Bank, Poverty Reduction and Economic Management, Thematic Group on Poverty Analysis, Monitoring and Impact Evaluation*. pp. 54 Series (5).
- Bowes, D. R., & Ihlanfeldt, K. R. (2001). Identifying the impacts of rail transit stations on residential property values. *Journal of Urban Economics*, *50*(1), 1–25.
- Cervero, R., & Duncan, M. (2002). Transit's value-added effects: Light and commuter rail services and commercial land values. Transportation Research Record. *Journal of the Transportation Research Board*, *1805*, 8–15.
- Colin Buchanan and Partners. (2003, July). Economic and regeneration impact of tramlink. *Report for the South London Partnership, Funded by the London Development Agency, Transport for London and the London Boroughs of Croydon and Sutton* (pp. 10). London: Wit press.
- Debrezion, G., Pels, E., & Rietveld, P. (2011). The impact of rail transport on real estate prices: An empirical analysis of the Dutch housing market. *Urban Studies*, *48*, 997–1015.
- Doherty, M. (2004). Funding public transport development through land value capture programs. *Institute for Sustainable Futures.* (pp. 30).
- Enoch, M., Potter, S., & Ison, S. (2005). A strategic approach to financing public transport through property values. *Public Money and Management*, *25*, 147–154.
- Freeman, A. M. (1979). The hedonic price approach to measuring demand for neighborhood characteristics. In D. Segal (Ed.), *The economics of neighborhood*, 191–217. New York: Academic Press.
- Geurs, K., Haaijer, R., & Van Wee, B. (2006). Option value of public transport: Methodology for measurement and case study for regional rail links in the Netherlands. *Transport Reviews*, 26, 613–643.
- Gibbons, S., & Machin, S. (2005). Valuing rail access using transport innovations. *Journal of Urban Economics*, *57*, 148–169.

- Hau, T. D. K. (1988). *The demand for public transport in Hong Kong*. Hong Kong: Centre of Urban Studies & Urban Planning, University of Hong Kong.
- Henneberry, J. (1998). Transport investment and house prices. *Journal of Property Valuation and Investment*, 16, 144–158.
- Jun, M. J. (2012). Redistributive effects of bus rapid transit (BRT) on development patterns and property values in Seoul, Korea. *Transport Policy*, *19*, 85–92.
- Meakin, R. T. (1994). Prospects for city and suburban public transport. In H. T. Dimitriou (Ed.), Moving away from the motor vehicle (pp. 103–118). The German and Hong Kong Experience: Hong Kong: The Centre of Urban Planning and Environmental Management, The University of Hong Kong.
- Munoz-Raskin, R. (2010). Walking accessibility to bus rapid transit: Does it affect property values? The case of Bogotá, Colombia. *Transport Policy*, *17*, 72–84.
- Rodrigues, D. A., & Targa, F. (2004). Value of accessibility to Bogota's bus rapid transit system. *Transport Reviews*, 24, 587-610.
- Rodríguez, D. A., & Mojica, C. H. (2009). Capitalization of BRT network expansions effects into prices of non-expansion areas. *Transportation Research Part A: Policy and Practice*, 43, 560–571.
- Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competition. *Journal of Political Economy*, 82, 34–55.
- So, H. M., Tse, R. Y., & Ganesan, S. (1997). Estimating the influence of transport on house prices: Evidence from Hong Kong. *Journal of Property Valuation and Investment*, 15, 40–47.
- Transmilenio, S. A. (2007). Retrieved from www.transmilenio.gov.co/
- Ubbels, B., & Nijkamp, P. (2002). Unconventional funding of urban public transport. *Transportation Research Part D: Transport and Environment*, *7*, 317–329.
- Wrigley, M., Wyatt, P., & Lane, C. (2001). Transport policy and property values. In RICS Cutting Edge Conference, 5, 7.
- Zamparini, L., & Reggiani, A. (2007). Meta-analysis and the value of travel time savings: A transatlantic perspective in passenger transport. *Networks and Spatial Economics*, *7*, 377–396.

|                              |                                              | Des            | Descriptive statistics |                         | Unstandardised coef-<br>ficients | dardised coef-<br>ficients | Standardised coefficients  | ÷      | Sig  | Collinearity sta-<br>tistics | y sta-<br>s |
|------------------------------|----------------------------------------------|----------------|------------------------|-------------------------|----------------------------------|----------------------------|----------------------------|--------|------|------------------------------|-------------|
| Model                        |                                              | Mean           | Std. deviation         | z                       | в                                | Std. error                 | β                          |        |      | Tolerance                    | VIF         |
| Dependent variable: GLA 2008 | e: GLA 2008                                  | 8063.43        | 8434.240               | 69                      |                                  |                            |                            |        |      |                              |             |
| Predictors (Constant)        | tant)                                        |                |                        | -                       | 3184.486                         | 8106.371                   |                            | 1.626  | .109 |                              |             |
| Distar                       | Distance from Gautrain                       | 3.675          | 3.3983                 | - 69                    | -629.004                         | 421.025                    | 253                        | -1.494 | .141 | .448                         | 2.232       |
| Within                       | Within 500 m from bus stop / 1 km of station | .783           | .4155                  | 69 1                    | 310.541                          | 3121.055                   | .065                       | .420   | .676 | .545                         | 1.834       |
| Office                       | Office parks                                 | .420           | .497                   | - 69                    | -897.062                         | 6346.091                   | 053                        | 141    | .888 | .092                         | 10.858      |
| High                         | High rise offices                            | .072           | .261                   | - /                     | 5804.838                         | 7319.144                   | .180                       | 0.793  | .431 | .251                         | 3.984       |
| Low ri                       | Low rise offices                             | .478           | .503                   | - 69                    | -2992.542                        | 6043.322                   | 179                        | 495    | .622 | 660.                         | 10.084      |
| Hatfield                     | eld                                          | .087           | .284                   |                         | -1107.003                        | 3776.177                   | 037                        | 293    | .770 | .798                         | 1.253       |
| Centurion                    | Irion                                        | .058           | .235                   | - 69                    | -7125.397                        | 4426.626                   | 199                        | -1.610 | .113 | .845                         | 1.184       |
| Midrand                      | ind                                          | .130           | .339                   | - 69                    | -475.952                         | 3111.152                   | 019                        | 153    | .879 | .823                         | 1.215       |
| Rosebank                     | ank                                          | .217           | .415                   | '                       | -5544.862                        | 3229.123                   | 273                        | -1.717 | .091 | .509                         | 1.963       |
| Park                         |                                              | .043           | .205                   | 69                      | 5954.356                         | 4979.365                   | .145                       | 1.196  | .237 | .876                         | 1.141       |
| Cap_r                        | Cap_rate2008                                 | .114           | .03438                 | - 69                    | -8133.002                        | 31248.361                  | 033                        | 260    | .796 | .794                         | 1.259       |
|                              |                                              |                |                        |                         |                                  |                            |                            |        |      |                              |             |
|                              |                                              |                | W                      | Model summary           | nmary                            |                            |                            |        |      |                              |             |
| Model                        | R                                            | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                                  | Sto                        | Std. error of the estimate |        | ð    | Durbin-Watson                |             |
| 1                            | .515                                         | .265           | .123                   | 23                      |                                  |                            | 7896.684                   |        |      | 2.203                        |             |
| ANOVA                        |                                              |                |                        |                         |                                  |                            |                            |        |      |                              |             |
| Model                        | Sum of squares                               | df             | Mean                   | Mean square             |                                  |                            | F                          |        |      | Sig.                         |             |
| Regression                   | 1282890566.52                                | 11             | 116626                 | 116626415.14            |                                  |                            | 1.870                      |        |      | .063                         |             |
| Residual                     | 3554384554.44                                | 57             | 62357(                 | 62357623.76             |                                  |                            |                            |        |      |                              |             |
| Total                        | 4837275120.96                                | 68             |                        |                         |                                  |                            |                            |        |      |                              |             |
| -                            |                                              |                |                        |                         |                                  |                            |                            |        |      |                              |             |

| 6              |
|----------------|
| ā              |
| Ť              |
| Ĕ              |
|                |
| <u> </u>       |
| _ X            |
| Ð              |
| 2              |
| ō              |
| ÷              |
| ъ              |
| 2              |
| 6              |
| S              |
|                |
| C              |
| Ð              |
| Ľ              |
| <b>T</b>       |
| <b>U</b>       |
|                |
|                |
| , ia           |
| F              |
| Ū              |
|                |
| S              |
| S              |
| 9              |
| ΰ              |
| U              |
| 00             |
| Õ              |
| õ              |
| Ň              |
|                |
| Ō              |
| -              |
| d)             |
| 2              |
| 3              |
| - <del>X</del> |
| a              |
| ž              |
|                |

Annexures 1.

|                              |                        | Des            | Descriptive statistics |                         | Unstandar<br>fici | Unstandardized coef-<br>ficients | Standardised coefficients  |        |      | Collinearity<br>statistics | rity<br>cs |
|------------------------------|------------------------|----------------|------------------------|-------------------------|-------------------|----------------------------------|----------------------------|--------|------|----------------------------|------------|
| Model                        |                        | Mean           | Std. deviation         | z                       | В                 | Std. error                       | β                          | t      | Sig. | Tolerance                  | VIF        |
| Dependent variable: GLA 2008 |                        | 8063.43        | 8434.24                | 69                      |                   |                                  |                            |        |      |                            |            |
| Predictors (Constant)        |                        |                |                        |                         | 7382.168          | 7861.771                         |                            | .939   | .351 |                            |            |
| Distance from Gautrain       | Ц                      | 3.675          | 3.3983                 | 69                      | -467.463          | 420.176                          | 188                        | -1.113 | .270 | .471                       | 2.123      |
| Within 500 m from bu         | s stop/1 km of station | .783           | .4155                  | 69                      | 2659.587          | 3132.809                         | .131                       | .849   | 399  | .567                       | 1.765      |
| Office parks                 |                        | .420           | .497                   | 69                      | 2679.133          | 6038.329                         | .158                       | .444   | .659 | .107                       | 9.388      |
| High rise offices            |                        | .072           | .261                   | 69                      | 8858.875          | 6967.183                         | .274                       | 1.272  | .208 | .290                       | 3.448      |
| Low rise offices             |                        | .478           | .503                   | 69                      | -390.576          | 5940.207                         | 023                        | 066    | .948 | .107                       | 9.305      |
| Cap_rate2008                 |                        | .114           | .03438                 | 69                      | -20069.01         | 29456.557                        | 082                        | 681    | .498 | .936                       | 1.068      |
| Sandton                      |                        | .464           | .502                   | 69                      | 2221.360          | 2301.907                         | .132                       | .965   | .338 | .718                       | 1.393      |
|                              |                        |                |                        |                         |                   |                                  |                            |        |      |                            |            |
|                              |                        |                | 2                      | 1odel s                 | Model summary     |                                  |                            |        |      |                            |            |
| Model                        | R                      | R <sup>2</sup> | Adju                   | Adjusted R <sup>2</sup> |                   | Std                              | Std. error of the estimate |        | Du   | Durbin-Watson              |            |
| 1                            | .420                   | .177           |                        | .082                    |                   |                                  | 8080.350                   |        |      | 1.922                      |            |
| ANOVA                        |                        |                |                        |                         |                   |                                  |                            |        |      |                            |            |
|                              | Sum of squares         | df             | Mean                   | Mean square             |                   |                                  | F                          |        |      | Sig.                       |            |
| Regression                   | 854459851.63           | 7              | 12206                  | 22065693.09             | •                 |                                  | 1.870                      |        |      | 060.                       |            |
| Residual                     | 3982815269.33          | 61             | 65292                  | 65292053.60             |                   |                                  |                            |        |      |                            |            |
| Total                        | 4837275120 96          | 68             |                        |                         |                   |                                  |                            |        |      |                            |            |

Annexure 1b. 2008 Gross lettable area, Sandton only

|            |                                            | Des            | Descriptive statistics  |                | Unstanc<br>Coeff | Unstand ardised<br>Coefficients | Standardised coefficients  |        |      | Collinearity sta-<br>tistics | y sta- |
|------------|--------------------------------------------|----------------|-------------------------|----------------|------------------|---------------------------------|----------------------------|--------|------|------------------------------|--------|
| Model      |                                            | Mean           | Std. deviation          | z              | в                | Std. error                      | β                          | t      | Sig. | Tolerance                    | VIF    |
| Dependent  | Dependent variable: value 2008             | 82.95          | 158.195                 | 69             |                  |                                 |                            |        |      |                              |        |
| Predictors | (Constant)                                 |                |                         |                | 214.253          | 149.437                         |                            | 1.434  | .157 |                              |        |
|            | Distance from Gautrain                     | 3.675          | 3.3983                  | 69             | -8.265           | 7.761                           | 178                        | -1.065 | .291 | .448                         | 2.232  |
|            | Within 500 m from bus stop/1 km of station | .783           | .4155                   | 69             | 38.210           | 57.535                          | .100                       | .664   | 509  | .545                         | 1.834  |
|            | Office parks                               | .420           | .497                    | 69             | -9.289           | 116.987                         | 029                        | 079    | .937 | .092                         | 10.858 |
|            | High rise offices                          | .072           | .261                    | 69             | 217.026          | 134.925                         | .358                       | 1.608  | .113 | .251                         | 3.984  |
|            | Low rise offices                           | .478           | .503                    | 69             | -13.899          | 111.406                         | 044                        | 125    | .901 | 660.                         | 10.084 |
|            | Hatfield                                   | .087           | .284                    | 69             | -87.753          | 69.612                          | 157                        | -1.261 | .213 | .798                         | 1.253  |
|            | Centurion                                  | .058           | .235                    | 69             | -141.101         | 81.603                          | 210                        | -1.729 | .089 | .845                         | 1.184  |
|            | Midrand                                    | .130           | .339                    | 69             | -77.169          | 57.353                          | 165                        | -1.346 | .184 | .823                         | 1.215  |
|            | Rosebank                                   | .217           | .415                    | 69             | -79.723          | 59.527                          | 209                        | -1.339 | .186 | .509                         | 1.963  |
|            | Park                                       | .043           | .205                    | 69             | -9.813           | 91.792                          | 013                        | 107    | .915 | .876                         | 1.141  |
|            | Cap_rate2008                               | .114           | .03438                  | 69             | -808.287         | 576.049                         | 176                        | -1.403 | .166 | .794                         | 1.259  |
|            |                                            |                |                         |                |                  |                                 |                            |        |      |                              |        |
|            |                                            |                | 2                       | lodel          | Model summary    |                                 |                            |        |      |                              |        |
| Model      | R                                          | R <sup>2</sup> | Adjusted R <sup>2</sup> | R <sup>2</sup> |                  | Std.                            | Std. error of the estimate |        | ā    | Durbin-Watson                |        |
| 1          | .539                                       | .290           | .153                    |                |                  |                                 | 145.572                    |        |      | 2.243                        |        |
| ANOVA      |                                            |                |                         |                |                  |                                 |                            |        |      |                              |        |
| Model      | 8                                          | df             | Mean square             | are            |                  |                                 | 4                          |        |      | Sig.                         |        |
| Regression | 493856.66                                  | 11             | 44896.06                | 9              |                  |                                 | 2.119                      |        |      | .033                         |        |
| Residual   | 1207895.13                                 | 57             | 21191.14                | 4              |                  |                                 |                            |        |      |                              |        |
| Total      | 1701751.79                                 | 68             |                         |                |                  |                                 |                            |        |      |                              |        |
|            |                                            |                |                         |                |                  |                                 |                            |        |      |                              |        |

Annexure 1c. 2008 Total value, Sandton excluded

| el indent variable: value 2008 Me<br>indent variable: value 2008 82.1<br>ctors (Constant)<br>Distance from Gautrain 3.1<br>Within 500 m from bus stop/1 km of station 3.1<br>Within 500 m from bus stop/1 km of station 3.1<br>Office parks 4.4<br>Low rise offices 6.6<br>Low rise offices 6.7<br>Low rise 6.7<br>Low ris |            |                                            | Des            | Descriptive statistics |                     | Unstan<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients |        |      | Collinearity<br>Statistics | rity<br>cs |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|----------------|------------------------|---------------------|------------------|--------------------------------|---------------------------|--------|------|----------------------------|------------|
| ent variable: value 2008     82.95     158.20     69     119.719     138.526       is     (Constant) $3.675$ $3.3983$ $69$ $-7.463$ $7.404$ $160$ Distance from Gautrain $3.675$ $3.3983$ $69$ $-7.463$ $7.404$ $160$ Within 500 m from bus stop/1 km of station $7.83$ $.4155$ $69$ $-9.180$ $106.397$ $-0.29$ Office parks $.072$ $261$ $69$ $-9.180$ $106.397$ $-0.29$ Office parks $.072$ $241$ $.341$ $160$ $160$ Office parks $.072$ $261$ $69$ $-9.180$ $106.397$ $029$ Low rise offices $.072$ $241$ $.3278$ $104.668$ $044$ Low rise offices $.114$ $.03438$ $69$ $-773.708$ $510.032$ $160$ Sandton $.464$ $.502$ $69$ $81.492$ $40.560$ $.259$ $168$ Low rise offices $.114$ $.03438$ $69$ $-773.708$ $510.032$ $168$ Sandton $.464$ $.502$ $69$ $81.492$ $40.560$ $.259$ Sandton $.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Model      |                                            | Mean           | Std. deviation         | z                   | В                | Std. error                     | β                         | t      | Sig. | Tolerance                  | VIF        |
| rs       (Constant)       119,719       138.526 $-160$ $-160$ Distance from Gautrain $3.675$ $3.3983$ $69$ $-7.463$ $7.404$ $-1160$ Within 500 m from bus stop/1 km of station $783$ $4155$ $69$ $46.938$ $55.201$ $.123$ Office parks $A20$ $497$ $69$ $-9.180$ $106.397$ $-0.29$ High rise offices $.072$ $.261$ $69$ $206.674$ $122.763$ $.341$ Low rise offices $114$ $.03438$ $69$ $-773.708$ $104.668$ $029$ Sandton $160$ $13728$ $104.668$ $029$ $168$ Sandton $464$ $.502$ $69$ $81.492$ $40.560$ $293$ Sandton $664$ $13728$ $104.668$ $044$ $168$ Sandton $673$ $323$ $092$ $168$ $168$ Sandton $73708$ $973708$ $168$ $168$ $168$ Sandton $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dependent  | variable: value 2008                       | 82.95          | 158.20                 | 69                  |                  |                                |                           |        |      |                            |            |
| $ \begin{array}{c ccccc} \mbox{Distance from Gautrain} & 3.675 & 3.3983 & 69 & -7.463 & 7.404 &160 \\ \mbox{Within 500 m from bus stop/1 km of station} & .783 & .4155 & 69 & 46.938 & 55.201 & .123 \\ \mbox{Office parks} & .420 & .497 & 69 & -9.180 & 106.397 &029 \\ \mbox{Offices} & .773.7 & .114 & .03438 & 69 & -13.728 & 104.668 &044 \\ \mbox{Low rise offices} & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .114 & .03438 & 69 & -773.7 08 & 519.032 &168 \\ \mbox{Cap}\_rate2008 & .104 & .502 & 69 & 81.492 & 40.560 & .259 \\ \mbox{Cap}\_rate2008 & .100 & .168 & .203 & .100 \\ \mbox{Model summary} & R & R^2 & Adjusted R^2 & .100 & .142.378 \\ \mbox{Cap}\_rate2055 & .213 & .273 & .190 & .142.378 \\ \mbox{Model summary} & .190 & .142.378 & .3278 \\ \mbox{Model summary} & .100 & .142.378 & .3278 \\ \mbox{Model summary} & .190 & .142.378 & .3278 & .3278 \\ \mbox{Model summary} & .190 & .142.378 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .3278 & .327$                                                                                                                                                                                                                                                                                                                                                                                                                              | Predictors |                                            |                |                        |                     | 119.719          | 138.526                        |                           | .864   | .391 |                            |            |
| Within 500 m from bus stop/1 km of station       783 $4155$ 69 $46.938$ $55.201$ .123         Office parks       .420       .497       69       -9.180       106.397      029         High rise offices       .072       .261       69       -9.180       106.397      029         Low rise offices       .072       .261       69       -13.728       104.668      024         Low rise offices       .114       .03438       69       -13.728       104.668      044         Cap_rate2008       .114       .03438       69       -773.708       519.032      168         Sandton       .464       .502       69       81.492       40.560       .259      168         Sandton       .464       .502       69       81.492       40.560       .259      168         Sandton       .523       .273       .190       14.23.78       .142.378       .142.378         n       .523       .273       .190       142.378       .3278       .142.378         n       .123656.53       .61       .20271.42       .3.278       .3.278       .3.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Distance from Gautrain                     | 3.675          | 3.3983                 | 69                  | -7.463           | 7.404                          | 160                       | -1.008 | .317 | .471                       | 2.123      |
| Office parks         A20         497         69         -9.180         106.397        029           High rise offices         .072         .261         69         206.674         122.763         .341           Low rise offices         .072         .261         69         -13.728         104.668        024           Cap_rate2008         .114         .03438         69         -13.728         104.668        044           Cap_rate2008         .114         .03438         69         -173.708         519.032        168           Sandton         .464         .502         69         81.492         40.560         .259           Andiusted R <sup>1</sup> .         Model summary         Model summary         .168         .168           Sum of squares         df         Mean square         .190         .142.378         .142.378           1         .13065.53         .61         .20271.42         .3.278         .3.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Within 500 m from bus stop/1 km of station | .783           | .4155                  |                     | 46.938           | 55.201                         | .123                      | .850   | .398 | .567                       | 1.765      |
| High rise offices       .072       .261       69       206.674       122.763       .341         Low rise offices       .478       .503       69       -13.728       104.668      044         Cap_rate2008       .114       .03438       69       -773.708       519.032      168         Sandton       .464       .502       69       81.492       40.560       .259         Adjusted R <sup>2</sup> Model summary       Model summary       Adjusted R <sup>2</sup> Std. error of the estimate         .523       .273       .190       1492       3.278       142.378         .513       .273       .190       142.378       142.378         .10       122.655.53       .61       .202.11.42       3.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Office parks                               | .420           | .497                   |                     | -9.180           | 106.397                        | 029                       | 086    | .932 | .107                       | 9.388      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | High rise offices                          | .072           | .261                   |                     | 206.674          | 122.763                        | .341                      | 1.684  | 760. | .290                       | 3.448      |
| Cap_rate2008       .114       .03438       69       -773.708       519.032      168         Sandton       .464       .502       69       81.492       40.560       .259         R       R       .502       69       81.492       40.560       .259         R       R       .502       69       81.492       40.560       .259         R       R       .503       .502       69       81.492       40.560       .259         R       R       R       Adjusted R <sup>2</sup> .190       .142.378         Sum of squares       df       Mean square       .142.378         1       1.236556.53       61       .20271.42       3.278         1       1.236556.53       61       .20271.42       3.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Low rise offices                           | .478           | .503                   |                     | -13.728          | 104.668                        | 044                       | 131    | .896 | .107                       | 9.305      |
| Saidton         .464         .502         69         81.492         40.560         .259            R         R         Model summary         Model summary         Model summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Cap_rate2008                               | .114           | .03438                 |                     | -773.708         | 519.032                        | 168                       | -1.491 | .141 | .936                       | 1.068      |
| R         R2         Adjusted R2           523         .273         .190           523         .273         .190           523         .273         .190           5195.27         7         66456.47           1236556.53         61         20271.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Sandton                                    | .464           | .502                   | 69                  | 81.492           | 40.560                         | .259                      | 2.009  | .049 | .718                       | 1.393      |
| R         R2         Model summary           .523         .273         .190           .523         .273         .190           Sum of squares         df         Mean square           1         123656.53         61         20271.42           1         123656.53         61         20271.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                            |                |                        |                     |                  |                                |                           |        |      |                            |            |
| R         R <sup>2</sup> Adjusted R <sup>2</sup> .523         .273         .190           .523         .273         .190           Sum of squares         df         Mean square           0n         465195.27         7         66456.47           1         1236556.53         61         20271.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                            |                | 2                      | lodel s             | ummary           |                                |                           |        |      |                            |            |
| .523     .273     .190       Sum of squares     df     Mean square       0n     465195.27     7     66456.47       1     1236556.53     61     20271.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Model      | R                                          | R <sup>2</sup> | Adjus                  | sted R <sup>2</sup> |                  | Ş                              | d. error of the estimate  |        | Ď    | Durbin-Watson              |            |
| on Sum of squares df Mean square<br>on 465195.27 7 6645647<br>1 1236556.53 61 20271.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | .523                                       | .273           |                        | 90                  |                  |                                | 142.378                   |        |      | 2.164                      |            |
| Sum of squares         df         Mean square           sion         465195.27         7         66456.47           al         1236556.53         61         20271.42           al         70175.170         68         61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANOVA      |                                            |                |                        |                     |                  |                                |                           |        |      |                            |            |
| 465195.27 7 66456.47<br>1236556.53 61 20271.42<br>1701751 20 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model      | Sum of squares                             | df             | Mean                   | square              |                  |                                | F                         |        |      | Sig.                       |            |
| 1236556.53 61<br>1701751 70 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Regression | 465195.27                                  | 7              | 664                    | 56.47               |                  |                                | 3.278                     |        |      | .005                       |            |
| 1701751 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Residual   | 1236556.53                                 | 61             | 202                    | 71.42               |                  |                                |                           |        |      |                            |            |
| 6/10/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total      | 1701751.79                                 | 68             |                        |                     |                  |                                |                           |        |      |                            |            |

Annexure 1d. 2008 Total value, Sandton only

|            |                                               | Desc           | Descriptive statistics |                         | Unstandardised coef-<br>ficients | lised coef-<br>nts | Standardised coefficients  |        |      | Collinearity Sta-<br>tistics | ity Sta-<br>cs |
|------------|-----------------------------------------------|----------------|------------------------|-------------------------|----------------------------------|--------------------|----------------------------|--------|------|------------------------------|----------------|
| Model      |                                               | Mean           | Std. deviation         | z                       | В                                | Std. error         | β                          | t      | Sig. | Tolerance                    | VIF            |
| Dependent  | Dependent variable: value/m <sup>2</sup> 2008 | 8719.30        | 3131.865               | 69                      |                                  |                    |                            |        |      |                              |                |
| Predictors | (Constant)                                    |                |                        |                         | 14492.924                        | 2688.388           |                            | 5.391  | 000. |                              |                |
|            |                                               | 3.675          | 3.3983                 | 69                      | -88.566                          | 139.628            | 096                        | -0.634 | .528 | .448                         | 2.232          |
|            | Within 500 m from bus stop/1 km of station    | .783           | .4155                  | 69                      | 839.711                          | 1035.063           | .111                       | .811   | .421 | .545                         | 1.834          |
|            | Office parks                                  | .420           | .497                   | 69                      | -1759.773                        | 2104.611           | 279                        | 836    | .407 | .092                         | 10.858         |
|            | High rise offices                             | .072           | .261                   | 69                      | 1759.092                         | 2427.313           | .147                       | .725   | .472 | .251                         | 3.984          |
|            | Low rise offices                              | .478           | .503                   | 69                      | -552.243                         | 2004.201           | 089                        | 276    | .784 | 660.                         | 10.084         |
|            | Hatfield                                      | .087           | .284                   | 69                      | -1137.886                        | 1252.327           | 103                        | 909    | .367 | .798                         | 1.253          |
|            | Centurion                                     | .058           | .235                   | 69                      | -3038.643                        | 1468.041           | 228                        | -2.070 | .043 | .845                         | 1.184          |
|            | Midrand                                       | .130           | .339                   | 69                      | -1695.881                        | 1031.779           | 184                        | -1.644 | .106 | .823                         | 1.215          |
|            | Rosebank                                      | .217           | .415                   | 69                      | -2199.657                        | 1070.903           | 292                        | -2.054 | .045 | 509                          | 1.963          |
|            | Park                                          | .043           | .205                   | 69                      | -2923.343                        | 1651.351           | 192                        | -1.770 | .082 | .876                         | 1.141          |
|            | Cap_rate2008                                  | .114           | .03438                 | 69                      | -36116.99                        | 10363.172          | 397                        | -3.485 | .001 | .794                         | 1.259          |
|            |                                               |                | 2                      | lodel s                 | Model summary                    |                    |                            |        |      |                              |                |
| Model      | æ                                             | R <sup>2</sup> | Adius                  | Adjusted R <sup>2</sup> |                                  | Std                | Std. error of the estimate |        | Ō    | Durbin-Watson                |                |
| -          | .643                                          | .414           | , ui                   | .301                    |                                  |                    | 2618.848                   |        |      | 2.209                        |                |
| ANOVA      |                                               |                |                        |                         |                                  |                    |                            |        |      |                              |                |
| Model      | Sum of squares                                | df             | Mean                   | Mean square             |                                  |                    | F                          |        |      | Sig.                         |                |
| Regression | 276056800.37                                  | 11             | 25096                  | 25096072.76             |                                  |                    | 3.659                      |        |      | .001                         |                |
| Residual   | 390926717.16                                  | 57             | 6858                   | 6858363.46              |                                  |                    |                            |        |      |                              |                |
| Total      | 666983517.53                                  | 68             |                        |                         |                                  |                    |                            |        |      |                              |                |

Annexure 1e. 2008 Total value per square meter, Sandton excluded

|             |                                               | Desc           | Descriptive statistics  |                   | Unstandardised coef-<br>ficients | dised coef-<br>ents | Standardisd coefficients   |        |      | Collinearity<br>Statistics | rity<br>cs |
|-------------|-----------------------------------------------|----------------|-------------------------|-------------------|----------------------------------|---------------------|----------------------------|--------|------|----------------------------|------------|
| Model       |                                               | Mean           | Std. deviation          | z                 | в                                | Std. error          | β                          | t      | Sig. | Tolerance                  | VIF        |
| Dependent v | Dependent variable: value/m <sup>2</sup> 2008 | 8719.30        | 3131.87                 | 69                |                                  |                     |                            |        |      |                            |            |
| Predictors  | (Constant)                                    |                |                         |                   | 12377.099                        | 2499.585            |                            | 4.952  | 000. |                            |            |
|             | Distance from Gautrain                        | 3.675          | 3.3983                  | 69                | -77.591                          | 133.591             | 084                        | 581    | .564 | .471                       | 2.123      |
|             | Within 500 m from bus stop/1 km of station    | .783           | .4155                   | 69                | 990.705                          | 996.051             | .131                       | .995   | .324 | .567                       | 1.765      |
|             | Office parks                                  | .420           | .497                    | 69                | -1496.467                        | 1919.837            | 238                        | 779    | .439 | .107                       | 9.388      |
|             | High rise offices                             | .072           | .261                    | 69                | 1968.936                         | 2215.158            | .164                       | .889   | .378 | .290                       | 3.448      |
|             | Low rise offices                              | .478           | .503                    | 69                | -458.520                         | 1888.639            | 074                        | 243    | 809. | .107                       | 9.305      |
|             | Cap_rate2008                                  | .114           | .03438                  | 69                | -38238.58                        | 9365.468            | 420                        | -4.083 | 000. | .936                       | 1.068      |
|             | Sandton                                       | .464           | .502                    | 69                | 1999.902                         | 731.872             | .321                       | 2.733  | .008 | .718                       | 1.393      |
|             |                                               |                |                         |                   |                                  |                     |                            |        |      |                            |            |
|             |                                               |                | W                       | odel si           | Model summary                    |                     |                            |        |      |                            |            |
| Model       | R                                             | R <sup>2</sup> | Adjusted R <sup>2</sup> | ed R <sup>2</sup> |                                  | Std.                | Std. error of the estimate |        | đ    | Durbin-Watson              |            |
| 1           | .630                                          | .396           | .327                    | 7                 |                                  |                     | 2569.080                   |        |      | 2.143                      |            |
| ANOVA       |                                               |                |                         |                   |                                  |                     |                            |        |      |                            |            |
| Model       | Sum of squares                                | df             | Mean square             | guare             |                                  |                     | F                          |        |      | Sig.                       |            |
| Regression  | 264372982.88                                  | 7              | 37767568.98             | 568.98            |                                  |                     | 5.722                      |        |      | 000                        |            |
| Residual    | 402610534.65                                  | 61             | 6600172.70              | 72.70             |                                  |                     |                            |        |      |                            |            |
| Total       | 666983517 53                                  | 68             |                         |                   |                                  |                     |                            |        |      |                            |            |

Annexure 1f. 2008 Total value per square meter, Sandton only

|            |                                            | Des            | Descriptive statistics | s                       | Unstanc<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity sta-<br>tistics | ity sta-<br>s |
|------------|--------------------------------------------|----------------|------------------------|-------------------------|-------------------|--------------------------------|----------------------------|--------|------|------------------------------|---------------|
| Model      |                                            | Mean           | Std. deviation         | z                       | В                 | Std. error                     | β                          | t      | Sig. | Tolerance                    | ΥIF           |
| Dependent  | Dependent variable: rent 2008              | 78.73          | 22.719                 | 69                      |                   |                                | -                          |        | 5    |                              |               |
| Predictors | (Constant)                                 |                |                        |                         | 64.646            | 20.124                         |                            | 3.212  | .002 |                              |               |
|            | Distance from Gautrain                     | 3.675          | 3.3983                 | 69                      | 981               | 1.045                          | 147                        | 938    | .352 | .448                         | 2.232         |
|            | Within 500 m from bus stop/1 km of station | .783           | .4155                  | 69                      | 1.781             | 7.748                          | .033                       | .230   | .819 | .545                         | 1.834         |
|            | Office parks                               | .420           | .497                   | 69                      | -24.810           | 15.754                         | 543                        | -1.575 | .121 | .092                         | 10.858        |
|            | High rise offices                          | .072           | .261                   | 69                      | -8.653            | 18.169                         | 099                        | 476    | .636 | .251                         | 3.984         |
|            | Low rise offices                           | .478           | .503                   | 69                      | -10.482           | 15.002                         | 232                        | 699    | .488 | 660.                         | 10.084        |
|            | Hatfield                                   | .087           | .284                   | 69                      | -4.643            | 9.374                          | 058                        | 495    | .622 | .798                         | 1.253         |
|            | Centurion                                  | .058           | .235                   | 69                      | -20.977           | 10.989                         | 217                        | -1.909 | .061 | .845                         | 1.184         |
|            | Midrand                                    | .130           | .339                   | 69                      | -9.595            | 7.723                          | 143                        | -1.242 | .219 | .823                         | 1.215         |
|            | Rosebank                                   | .217           | .415                   | 69                      | -23.258           | 8.016                          | 425                        | -2.901 | .005 | .509                         | 1.963         |
|            | Park                                       | .043           | .205                   | 69                      | -26.586           | 12.361                         | 240                        | -2.151 | .036 | .876                         | 1.141         |
|            | Cap_rate2008                               | .114           | .03438                 | 69                      | 362.714           | 77.572                         | .549                       | 4.676  | 000  | .794                         | 1.259         |
|            |                                            |                |                        |                         |                   |                                |                            |        |      |                              |               |
|            |                                            |                | 4                      | Aodel si                | Model summary     |                                |                            |        |      |                              |               |
| Model      | R                                          | R <sup>2</sup> | Adju                   | Adjusted R <sup>2</sup> |                   | Ñ                              | Std. error of the estimate |        | Δ    | Durbin-Watson                | _             |
| 1          | .613                                       | .376           |                        | .255                    |                   |                                | 19.603                     |        |      | 2.262                        |               |
| ANOVA      |                                            |                |                        |                         |                   |                                |                            |        |      |                              |               |
| Model      | Sum of squares                             | df             | Mean                   | Mean square             |                   |                                | F                          |        |      | Sig.                         |               |
| Regression | 13194.23                                   | 11             | 11:                    | 1199.48                 |                   |                                | 3.121                      |        |      | .002                         |               |
| Residual   | 21903.83                                   | 57             | 38                     | 4.28                    |                   |                                |                            |        |      |                              |               |
| Total      | 35098.06                                   | 68             |                        |                         |                   |                                |                            |        |      |                              |               |

| led      |
|----------|
| cluc     |
| n ex     |
| 0        |
| Sandt    |
| meter, 1 |
| quare    |
| per s    |
| Rent     |
| 2008     |
| 1g.      |
| nexure   |

| I Mundent variable: rent 2008<br>ctors (Constant)<br>Distance from Gautrain<br>Within 500 m from bus stop/1 km of station<br>Office parks<br>High rise offices<br>Low rise offices<br>Cap_rate2008<br>Sandton<br>Sandton<br>Sandton<br>M<br>Sandton<br>Sandton<br>Cap_rate2008<br>Sandton<br>Sandton<br>Cap_rate2008<br>Sandton<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Cap_rate2008<br>Sandton<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Cap_rate2008<br>Ca |              |                                            | Desc           | Descriptive statistics |          | Unstan<br>coeff | Unstandardised<br>coefficients | Standardised coefficients |        |      | Collinearity<br>statistics | rity<br>cs |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|----------------|------------------------|----------|-----------------|--------------------------------|---------------------------|--------|------|----------------------------|------------|
| variable: rent 2008 78.7349 22.71889 69 45.107 19.185 (Constant) $3.675 3.33983 69753 1.025113$<br>Distance from Gautrain $3.675 3.33983 69753 1.025113$<br>Within 500 m from bus stop/1 km of station $.783 4155 69 3.670 7.645067$<br>Mithin 500 m from bus stop/1 km of station $.783 4155 69 3.670 7.645067$<br>Mithin 500 m from bus stop/1 km of station $.7834155 69 3.670 7.645067$<br>High rise offices $719 114303438 69 15.267 7.18814773$<br>Sandton $46502 69 15.267 7.18814773$ 338<br>69 15.267 7.118814773338<br>Model summary $46502 69 15.267 7.18814773$ 338<br>69 3.12.677 7.18814773338<br>69 3.12.677 7.18814733473<br>69 3.2.67 7.18814736116<br>7100200871964116<br>71902100200871904116<br>710271814773747 $747$ $747$ $7473$ 747 $747$ $7473$ 747 $7473$ 747 $7473$ 747 $7473$ 747 $747$ $7473$ 747 $7473$ 747 $747$ $747$ $747$ $7473$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $7473$ $747$ $7473$ $747$ $747$ $747$ $747$ $747$ $7473$ $747$ $7473$ $747$ $747$ $747$ $747$ $747$ $7473$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $7473$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $747$ $.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Model        |                                            | Mean           | Std. deviation         | z        | в               | Std. error                     | β                         | t      | Sig. | Tolerance                  | VIF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dependent va | ariable: rent 2008                         | 78.7349        | 22.71889               | 69       |                 |                                |                           |        |      |                            |            |
| $ \begin{array}{cccccc} Distance from Gautrain & 3.675 & 3.3983 & 69 &753 & 1.025 &113 \\ Within 500 m from bus stop/1 km of station & .783 & .4155 & 69 & 3.670 & 7.645 & .067 \\ Office parks & .42 & .497 & 69 & -16.251 & 14.735 &356 \\ High rise offices & .07 & .261 & 69 & .719 & 17.002 & .008 \\ Low rise offices & .1143 & .03438 & 69 & .312.677 & 71.881 & .473 \\ Cap_rate2008 & .1143 & .03438 & 69 & .312.677 & 71.881 & .473 \\ Sandton & .46 & .502 & 69 & 15.267 & 5.617 & .338 \\ \hline \\ R & R^2 & Adjusted R^2 & Adjusted R^2 & .247 & .19.71804 \\ \hline \\ Stan of squares & df & Mean square \\ .569 & .324 & .247 & .19.71804 \\ \hline \\ Sum of squares & df & Mean square \\ .569 & .3231 & .63 & .388.01 \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Predictors   | (Constant)                                 |                |                        |          | 45.107          | 19.185                         |                           | 2.351  | .022 |                            |            |
| Within 500 m from bus stop/1 km of station       .783       .415       .69       .3.670       .7.645       .0.67         Office parks       .42       .497       .69       .16.251       14.735      356         High rise offices       .07       .261       .69       .719       17.002       .008         Low rise offices       .07       .261       69       .719       17.002       .008         Low rise offices       .03       .312.677       71.881       .473       .338         Sandton       .46       .502       69       15.267       5.617       .338         Sandton       .46       .502       69       15.267       71.881       .473         Sandton       .46       .502       69       15.267       5.617       .338         And       .69       .32.47       71.881       .473       .338         Andiouted R <sup>2</sup> .32.4       .247       .338       .473         Sum of squares       df       Mean square       .569       .32.4       .19.71804         .338.01       .38.801       .38.801       .38.801       .4182       .4182         .3500       .38.801       .38.801       .38.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Distance from Gautrain                     | 3.675          | 3.3983                 | 69       | 753             | 1.025                          | 113                       | 734    | .466 | .471                       | 2.123      |
| Office parks         42         497         69         -16.251         14.735        356           High rise offices         .07         .261         69         .719         17.002         .008           Low rise offices         .07         .261         69         .719         17.002         .008           Low rise offices         .1143         .03438         69         .312.677         71.881         .473           Cap_rate2008         .1143         .03438         69         .312.677         71.881         .473           Sandton         .46         .502         69         15.267         5.617         .338           Andreas         .46         .502         69         15.267         5.617         .338           Andreas         .46         .502         69         15.267         5.617         .338           .69         .324         .47         .473         .338         .473           .69         .324         .247         .17.04         .97.1804           .569         .324         .247         .19.71804         .19.71804           .1381.193         7         .625.885         .47         .19.71804           .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | Within 500 m from bus stop/1 km of station | .783           | .4155                  | 69       | 3.670           | 7.645                          | .067                      | .480   | .633 | .567                       | 1.765      |
| High rise offices $07$ $261$ $69$ $719$ $17.002$ $008$ Low rise offices $48$ $503$ $69$ $-5.256$ $14.496$ $-116$ Cap_rate2008 $.1143$ $.03438$ $69$ $312677$ $71.881$ $.473$ Sandton $.46$ $.502$ $69$ $15.267$ $5.617$ $.338$ Adduction $.46$ $.502$ $69$ $15.267$ $5.617$ $.338$ Adduction $.46$ $.502$ $69$ $15.267$ $5.617$ $.338$ Adduction $.46$ $.502$ $69$ $15.267$ $5.617$ $.338$ Sandton $.46$ $.502$ $69$ $15.267$ $5.617$ $.338$ R $R^2$ $Adjusted R^2$ $R^2$ $Adjusted R^2$ $Std.error of the estimate         Sand for       8^2 .247 .247 .1977804         Sum of squares       df       Mean square       F A_{182} .13381.193 .7 .182 .4182 .388.01 .30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            | Office parks                               | .42            | .497                   | 69       | -16.251         | 14.735                         | 356                       | -1.103 | .274 | .107                       | 9.388      |
| Low rise offices       .48       .503       69       -5.256       14.496      116         Cap_rate2008       .1143       .03438       69       312.677       71.881       .473         Sandton       .46       .502       69       15.267       5.617       .338         Andel summary       .46       .502       69       15.267       5.617       .338         R       R       R       Model summary       .338       .338       .473         Sum of squares       .46       .502       .547       .1.81       .473         Sum of squares       .47       .247       .19.71804       .97.1804         1381.193       .7       16.25.885       .4.182       .4.182         .23716.870       .61       .38.801       .38.801       .182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | High rise offices                          | .07            | .261                   | 69       | .719            | 17.002                         | .008                      | .042   | 996. | .290                       | 3.448      |
| Cap_rate2008       .1143       .03438       69       312.677       71.881       .473         Sandton       .46       .502       69       15.267       5.617       .338         R       .46       .502       69       15.267       5.617       .338         R       .46       .502       69       15.267       5.617       .338         R       .40       .502       .501       5.617       .338         R       .8       .7       Model summary       .338         .569       .324       .247       19.71804         .569       .324       .247       19.71804         .11381.193       7       16.25.885       4.182         .208.01       .38.801       .8.801       .4.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Low rise offices                           | .48            | .503                   | 69       | -5.256          | 14.496                         | 116                       | 363    | .718 | .107                       | 9.305      |
| Saidton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            | Cap_rate2008                               | .1143          | .03438                 | 69       | 312.677         | 71.881                         | .473                      | 4.350  | 000. | .936                       | 1.068      |
| R         R <sup>2</sup> Adjusted R <sup>2</sup> .569         .324         .247           .569         .324         .247           Sum of squares         df         Mean square           11381.193         7         1625.885           2370.061         61         388.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ ,          | Sandton                                    | .46            | .502                   | 69       | 15.267          | 5.617                          | .338                      | 2.718  | 600. | .718                       | 1.393      |
| R         R <sup>2</sup> Adjusted R <sup>2</sup> .569         .324         .247           .569         .324         .247           Sum of squares         df         Mean square           11381.193         7         16.25.885           .23716.870         61         388.801           .35008.063         68         .38.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                            |                |                        |          |                 |                                |                           |        |      |                            |            |
| R         R <sup>2</sup> Adjusted R <sup>2</sup> .569         .324         .247           .500         .324         .247           Sum of squares         df         Mean square           11381.193         7         1625.885           23716.870         61         388.801           35008.063         68         388.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                            |                | W                      | odel su  | mmary           |                                |                           |        |      |                            |            |
| .569 .324 .247<br>Sum of squares df Mean square<br>11381.193 7 1625.885<br>23716.870 61 388.801<br>35008.063 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model        | В                                          | R <sup>2</sup> | Adjust                 | $ed R^2$ |                 | St                             | d. error of the estimate  |        | õ    | Durbin-Watson              |            |
| Sum of squares df Mean square<br>11381.193 7 1625.885<br>23716.870 61 388.801<br>35008.063 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            | .569                                       | .324           | .24                    | 2        |                 |                                | 19.71804                  |        |      | 2.072                      |            |
| Sum of squares df Mean square<br>11381.193 7 1625.885<br>23716.870 61 388.801<br>35008.053 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANOVA        |                                            |                |                        |          |                 |                                |                           |        |      |                            |            |
| 11381.193 7 1625.885<br>23716.870 61 388.801<br>3508.063 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model        | Sum of squares                             | df             | Mean s                 | quare    |                 |                                | F                         |        |      | Sig.                       |            |
| 23716.870 61<br>35008.063 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Regression   | 11381.193                                  | 7              | 1625                   | 885      |                 |                                | 4.182                     |        |      | .001                       |            |
| 35008 063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Residual     | 23716.870                                  | 61             | 388.                   | 301      |                 |                                |                           |        |      |                            |            |
| 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total        | 35098.063                                  | 68             |                        |          |                 |                                |                           |        |      |                            |            |

Annexure 1h. 2008 Rent per square meter, Sandton only

| Model Dependent variable: GLA 2015 Predictors (Constant) Predictors (Constant) Within 500 m from bus Offician party | 015<br>Gautrain                            | עבא            | Descriptive statistics |                         | ficie         | ficients   | Standardised coefficients  | t      | Sig. | statistics    | , S   |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|------------------------|-------------------------|---------------|------------|----------------------------|--------|------|---------------|-------|
| Dependent variable: GLA 2(<br>Predictors (Constant)<br>Distance from<br>Within 500 m                                | 015<br>Gautrain                            | Mean           | Std. deviation         | z                       | в             | Std. error | β                          |        |      | Tolerance     | ΥIF   |
| Predictors (Constant)<br>Distance from<br>Within 500 m                                                              | Gautrain                                   | 9935.85        | 8184.526               | 41                      |               |            |                            |        |      |               |       |
|                                                                                                                     | Gautrain                                   |                |                        |                         | 13583.574     | 8794.423   |                            | 1.545  | .133 |               |       |
| Within 500 m                                                                                                        |                                            | 3.367          | 2.9878                 | 41                      | -866.308      | 620.624    | 316                        | -1.396 | .173 | .519          | 1.925 |
| Office narks                                                                                                        | Within 500 m from bus stop/1 km of station | .854           | .3578                  | 41                      | -1501.500     | 4619.168   | 066                        | 325    | .747 | .654          | 1.530 |
|                                                                                                                     |                                            | .488           | .506                   | 41                      | 2821.224      | 3029.160   | .174                       | .931   | .359 | .760          | 1.316 |
| High rise offices                                                                                                   | es                                         | .073           | .264                   | 41                      | -813.911      | 5756.936   | 026                        | 141    | .889 | .775          | 1.290 |
| Hatfield                                                                                                            |                                            | .098           | .300                   | 41                      | -500.448      | 5059.546   | 018                        | 099    | .922 | .773          | 1.294 |
| Centurion                                                                                                           |                                            | .049           | .218                   | 41                      | -6174.531     | 6474.933   | 165                        | 954    | .348 | .896          | 1.117 |
| Midrand                                                                                                             |                                            | .146           | .358                   | 41                      | 1533.694      | 4242.348   | .067                       | .362   | .720 | .775          | 1.290 |
| Rosebank                                                                                                            |                                            | .146           | .358                   | 41                      | -5596.676     | 4858.479   | 245                        | -1.152 | .258 | .591          | 1.692 |
| Park                                                                                                                |                                            | .073           | .264                   | 41                      | 5790.077      | 5613.921   | .187                       | 1.031  | .311 | .815          | 1.227 |
| Cap_rate2008                                                                                                        |                                            | .1139          | .02627                 | 41                      | -2150.754     | 60675.170  | 007                        | 035    | .972 | .703          | 1.423 |
|                                                                                                                     |                                            |                |                        |                         |               |            |                            |        |      |               |       |
|                                                                                                                     |                                            |                | Σ                      | odel s                  | Model summary |            |                            |        |      |               |       |
| Model                                                                                                               | В                                          | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |               | Std.       | Std. error of the estimate |        | Du   | Durbin-Watson |       |
| 1                                                                                                                   | .447                                       | .200           | , i                    | 066                     |               |            | 8452.005                   |        |      | 1.763         |       |
| ANOVA                                                                                                               |                                            |                |                        |                         |               |            |                            |        |      |               |       |
| Model                                                                                                               | Sum of squares                             | df             | Mean                   | Mean square             |               |            | F                          |        |      | Sig.          |       |
| Regression                                                                                                          | 536367014.08                               | 10             | 53636                  | 53636701.41             |               |            | .751                       |        |      | .673          |       |
| Residual                                                                                                            | 2143091867.04                              | 30             | 71436                  | 71436395.57             |               |            |                            |        |      |               |       |
| Total                                                                                                               | 2679458881.12                              | 40             |                        |                         |               |            |                            |        |      |               |       |

Annexure 2a. 2015 Gross lettable area, Sandton excluded

|                                            | Des            | Descriptive statistics |                         | Unstandardised coef-<br>ficients | dised coef-<br>nts | Standardised coefficients  |        |      | Collinearity<br>statistics | ity<br>s |
|--------------------------------------------|----------------|------------------------|-------------------------|----------------------------------|--------------------|----------------------------|--------|------|----------------------------|----------|
| Model                                      | Mean           | Std. deviation         | z                       | В                                | Std. error         | β                          | t      | Sig. | Tolerance                  | VIF      |
| Dependent variable: GLA 2015               | 9935.85        | 8184.53                | 41                      |                                  |                    |                            |        |      |                            |          |
| Predictors (Constant)                      |                |                        |                         | 16162.138                        | 8779.356           |                            | 1.841  | .074 |                            |          |
| Distance from Gautrain                     | 3.367          | 2.9878                 | 41                      | -678.752                         | 610.209            | 248                        | -1.112 | .274 | .546                       | 1.831    |
| Within 500 m from bus stop/1 km of station | .854           | .3578                  | 41                      | 56.434                           | 4548.850           | .002                       | .012   | 066. | .685                       | 1.460    |
| High rise offices                          | .073           | .264                   | 41                      | -2853.192                        | 5615.780           | 092                        | 508    | .615 | .828                       | 1.208    |
| Low rise offices                           | .439           | .502                   | 41                      | -3541.528                        | 2872.861           | 217                        | -1.233 | .226 | .871                       | 1.148    |
| Cap_rate2008                               | .114           | .02627                 | 41                      | -22278.51                        | 52131.500          | 072                        | 427    | .672 | .968                       | 1.033    |
| Sandton                                    | .488           | .506                   | 41                      | 638.968                          | 3028.752           | .040                       | .211   | .834 | .773                       | 1.294    |
|                                            |                |                        |                         |                                  |                    |                            |        |      |                            |          |
|                                            |                | Ň                      | odel sı                 | Model summary                    |                    |                            |        |      |                            |          |
| Model R                                    | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                                  | Std                | Std. error of the estimate |        | Du   | Durbin-Watson              |          |
| 1                                          | .079           | 0.1                    | 084                     |                                  |                    | 8521.243                   |        |      | 1.531                      |          |
| ANOVA                                      |                |                        |                         |                                  |                    |                            |        |      |                            |          |
| Model Sum of squares                       | df             | Mean                   | Mean square             |                                  |                    | F                          |        |      | Sig.                       |          |
| Regression 210664857.12                    | 9              | 35110                  | 35110809.52             |                                  |                    | .484                       |        |      | .816                       |          |
| Residual 2468794024.00                     | 34             | 72611                  | 72611588.94             |                                  |                    |                            |        |      |                            |          |
| Total 2679458881.12                        | 40             |                        |                         |                                  |                    |                            |        |      |                            |          |
|                                            |                |                        |                         |                                  |                    |                            |        |      |                            | L        |

Annexure 2b. 2015 Gross Lettable area, Sandton only

|                                |                                            | Des            | Descriptive statistics | 5                       | Unstant<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity<br>statistics | rity<br>cs |
|--------------------------------|--------------------------------------------|----------------|------------------------|-------------------------|-------------------|--------------------------------|----------------------------|--------|------|----------------------------|------------|
| Model                          |                                            | Mean           | Std. deviation         | z                       | В                 | Std. error                     | β                          | t      | Sig. | Tolerance                  | VIF        |
| Dependent variable: value 2015 | 2015                                       | 148.63         | 169.487                | 41                      |                   |                                |                            |        |      |                            |            |
| Predictors (Constant)          |                                            |                |                        |                         | 387.614           | 186.588                        |                            | 2.077  | .046 |                            |            |
| Distance from                  | i Gautrain                                 | 3.367          | 2.9878                 | 41                      | -22.998           | 13.168                         | 405                        | -1.747 | .091 | .519                       | 1.925      |
| Within 500 m                   | Within 500 m from bus stop/1 km of station | .854           | .3578                  | 41                      | -33.599           | 98.003                         | 071                        | 343    | .734 | .654                       | 1.530      |
| Office parks                   |                                            | .488           | .506                   | 41                      | 5.159             | 64.268                         | .015                       | .080   | .937 | .760                       | 1.316      |
| High rise offices              | es                                         | .073           | .264                   | 41                      | -27.203           | 122.143                        | 042                        | 223    | .825 | .775                       | 1.290      |
| Hatfield                       |                                            | .098           | .300                   | 41                      | -78.900           | 107.346                        | 140                        | 735    | .468 | .773                       | 1.294      |
| Centurion                      |                                            | .049           | .218                   | 41                      | -148.575          | 137.376                        | 191                        | -1.082 | .288 | .896                       | 1.117      |
| Midrand                        |                                            | .146           | .358                   | 41                      | -67.657           | 90.008                         | 143                        | 752    | .458 | .775                       | 1.290      |
| Rosebank                       |                                            | .146           | .358                   | 41                      | -122.949          | 103.080                        | 260                        | -1.193 | .242 | .591                       | 1.692      |
| Park                           |                                            | .073           | .264                   | 41                      | 12.508            | 119.108                        | .019                       | .105   | .917 | .815                       | 1.227      |
| Cap_rate2008                   |                                            | .1139          | .02627                 | 41                      | -803.130          | 1287.321                       | 124                        | 624    | .537 | .703                       | 1.423      |
|                                |                                            |                |                        |                         |                   |                                |                            |        |      |                            |            |
|                                |                                            |                | 2                      | 1odel s                 | Model summary     |                                |                            |        |      |                            |            |
| Model                          | В                                          | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                   | Stc                            | Std. error of the estimate |        |      | Durbin-Watson              |            |
| 1                              | .401                                       | .160           | ľ                      | 119                     |                   |                                | 179.323                    |        |      | 1.908                      |            |
| ANOVA                          |                                            |                |                        |                         |                   |                                |                            |        |      |                            |            |
| Model                          | Sum of squares                             | df             | Mean                   | Mean square             |                   |                                | F                          |        |      | Sig.                       |            |
| Regression                     | 184329.59                                  | 10             | 184                    | 18432.96                |                   |                                | .573                       |        |      | .822                       |            |
| Residual                       | 964699.92                                  | 30             | 321:                   | 32156.66                |                   |                                |                            |        |      |                            |            |
| Total                          | 1149029.51                                 | 40             |                        |                         |                   |                                |                            |        |      |                            |            |

Annexure 2c. 2015 Total value, Sandton excluded

|                                |                                         | Des            | Descriptive statistics |                         | Unstanc<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity<br>statistics | rity<br>cs |
|--------------------------------|-----------------------------------------|----------------|------------------------|-------------------------|-------------------|--------------------------------|----------------------------|--------|------|----------------------------|------------|
| Model                          |                                         | Mean           | Std. deviation         | z                       | В                 | Std. error                     | β                          | t      | Sig. | Tolerance                  | VIF        |
| Dependent variable: value 2015 | le 2015                                 | 148.63         | 169.49                 | 41                      |                   |                                |                            |        |      |                            |            |
| Predictors (Constant)          |                                         |                |                        |                         | 303.024           | 177.594                        |                            | 1.706  | 760. |                            |            |
| Distance fro                   | Distance from Gautrain                  | 3.367          | 2.9878                 | 41                      | -21.218           | 12.344                         | 374                        | -1.719 | .095 | .546                       | 1.831      |
| Within 500                     | m from bus stop/1 km of station         | .854           | .3578                  | 41                      | -18.663           | 92.017                         | 039                        | 203    | .840 | .685                       | 1.460      |
| High rise of                   | fices                                   | .073           | .264                   | 41                      | -26.357           | 113.599                        | 041                        | 232    | .818 | .828                       | 1.208      |
| Low rise offi                  | ices                                    | .439           | .502                   | 41                      | -9.082            | 58.114                         | 027                        | 156    | .877 | .871                       | 1.148      |
| Cap_rate2008                   | 08                                      | .114           | .02627                 | 41                      | -876.213          | 1054.545                       | 136                        | 831    | .412 | .968                       | 1.033      |
| Sandton                        |                                         | .488           | .506                   | 41                      | 79.310            | 61.267                         | .237                       | 1.294  | .204 | .773                       | 1.294      |
|                                |                                         |                |                        |                         |                   |                                |                            |        |      |                            |            |
|                                |                                         |                | 2                      | 1odel s                 | Model summary     |                                |                            |        |      |                            |            |
| Model                          | В                                       | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                   | St                             | Std. error of the estimate |        | đ    | Durbin-Watson              |            |
| 1                              | .348                                    | .121           | .                      | 034                     |                   |                                | 172.372                    |        |      | 1.822                      |            |
| ANOVA                          |                                         |                |                        |                         |                   |                                |                            |        |      |                            |            |
| Model                          | Sum of squares                          | df             | Mean                   | square                  |                   |                                | F                          |        |      | Sig.                       |            |
| Regression                     | 138813.12                               | 9              | 231                    | 23135.52                |                   |                                | .779                       |        |      | .592                       |            |
| Residual                       | 1010216.39                              | 34             | 297                    | 12.25                   |                   |                                |                            |        |      |                            |            |
| Total                          | 1149029.51                              | 40             |                        |                         |                   |                                |                            |        |      |                            |            |
| וטנמו                          | 100000000000000000000000000000000000000 | ç              |                        |                         |                   |                                |                            |        |      |                            |            |

Annexure 2d. 2015 Total value, Sandton only

|                                               | Desc           | Descriptive statistics |                         | Unstandar<br>ficié | Unstandardised coef-<br>ficients | Standardised coefficients  |        |      | Collinearity<br>statistics | s ty  |
|-----------------------------------------------|----------------|------------------------|-------------------------|--------------------|----------------------------------|----------------------------|--------|------|----------------------------|-------|
| Model                                         | Mean           | Std. deviation         | z                       | в                  | Std. error                       | β                          | t      | Sig. | Tolerance                  | VIF   |
| Dependent variable: value/m <sup>2</sup> 2015 | 14025.73       | 4042.478               | 41                      |                    |                                  |                            |        |      |                            |       |
| Predictors (Constant)                         |                |                        |                         | 23956.968          | 3938.016                         |                            | 6.084  | 000. |                            |       |
| Distance from Gautrain                        | 3.367          | 2.9878                 | 41                      | -750.305           | 277.906                          | 555                        | -2.700 | .011 | .519                       | 1.925 |
| Within 500 m from bus stop/1 km of station    |                | .3578                  | 41                      | -1435.853          | 2068.397                         | 127                        | 694    | .493 | .654                       | 1.530 |
| Office parks                                  | .488           | .506                   | 41                      | -230.408           | 1356.414                         | 029                        | 170    | .866 | .760                       | 1.316 |
| High rise offices                             | .073           | .264                   | 41                      | 913.476            | 2577.873                         | .060                       | .354   | .726 | .775                       | 1.290 |
| Hatfield                                      | 860.           | .300                   | 41                      | -3393.415          | 2265.592                         | 252                        | -1.498 | .145 | .773                       | 1.294 |
| Centurion                                     | .049           | .218                   | 41                      | -3261.350          | 2899.382                         | 176                        | -1.125 | .270 | .896                       | 1.117 |
| Midrand                                       | .146           | .358                   | 41                      | -4019.573          | 1899.662                         | 356                        | -2.116 | .043 | .775                       | 1.290 |
| Rosebank                                      | .146           | .358                   | 41                      | 189.519            | 2175.557                         | .017                       | .087   | .931 | .591                       | 1.692 |
| Park                                          | .073           | .264                   | 41                      | -2159.675          | 2513.833                         | 141                        | 859    | .397 | .815                       | 1.227 |
| Cap_rate2008                                  | .1139          | .02627                 | 41                      | -43244.22          | 27169.467                        | 281                        | -1.592 | .122 | .703                       | 1.423 |
|                                               |                |                        |                         |                    |                                  |                            |        |      |                            |       |
|                                               |                | 2                      | lodel s                 | Model summary      |                                  |                            |        |      |                            |       |
| Model R                                       | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                    | Std.                             | Std. error of the estimate |        | Du   | Durbin-Watson              |       |
| 1 .585                                        | .343           |                        | .123                    |                    |                                  | 3784.686                   |        |      | 2.264                      |       |
|                                               |                |                        |                         |                    |                                  |                            |        |      |                            |       |
| Model Sum of squares                          | df             | Mean                   | Mean square             |                    |                                  | F                          |        |      | Sig.                       |       |
|                                               | 10             | 22394                  | 22394959.97             |                    |                                  | 1.563                      |        |      | .166                       |       |
| Residual 429715516.33                         | 30             | 14323                  | 14323850.54             |                    |                                  |                            |        |      |                            |       |
| Total 653665116.05                            | 40             |                        |                         |                    |                                  |                            |        |      |                            |       |
|                                               |                |                        |                         |                    |                                  |                            |        |      |                            |       |

| excluded  |
|-----------|
| Sandton   |
| re meter, |
| per squa  |
| 15 Value  |
| re 2e. 20 |
| Annexure  |

|            |                                               | Desci          | Descriptive statistics |                         | Unstandardised coef-<br>ficients | dised coef-<br>ints | Standardised coefficients  |        |      | Collinearity<br>statistics | s ty  |
|------------|-----------------------------------------------|----------------|------------------------|-------------------------|----------------------------------|---------------------|----------------------------|--------|------|----------------------------|-------|
| Model      |                                               | Mean           | Std. deviation         | z                       | в                                | Std. error          | β                          | t      | Sig. | Tolerance                  | VIF   |
| Depender   | Dependent variable: value/m <sup>2</sup> 2015 | 14025.73       | 4042.48                | 41                      |                                  |                     |                            |        |      |                            |       |
| Predictors | Predictors (Constant)                         |                |                        |                         | 19228.108                        | 3824.967            |                            | 5.027  | 000. |                            |       |
|            | Distance from Gautrain                        | 3.367          | 2.9878                 | 41                      | -810.579                         | 265.854             | 599                        | -3.049 | .004 | .546                       | 1.831 |
|            | Within 500 m from bus stop/1 km of station    | .854           | .3578                  | 41                      | -2087.583                        | 1981.831            | 185                        | -1.053 | .300 | .685                       | 1.460 |
|            | High rise offices                             | .073           | .264                   | 41                      | 729.348                          | 2446.668            | .048                       | .298   | .767 | .828                       | 1.208 |
|            | Low rise offices                              | .439           | .502                   | 41                      | 945.520                          | 1251.641            | .118                       | .755   | .455 | .871                       | 1.148 |
|            | Cap_rate2008                                  | .114           | .02627                 | 41                      | -21329.63                        | 22712.517           | 139                        | 939    | .354 | .968                       | 1.033 |
|            | Sandton                                       | .488           | .506                   | 41                      | 2602.613                         | 1319.559            | .326                       | 1.972  | .057 | .773                       | 1.294 |
|            |                                               |                |                        |                         |                                  |                     |                            |        |      |                            |       |
|            |                                               |                | X                      | odel sı                 | Model summary                    |                     |                            |        |      |                            |       |
| Model      | R                                             | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                                  | Std.                | Std. error of the estimate |        | Du   | Durbin-Watson              |       |
| -          | .532                                          | .283           |                        | .157                    |                                  |                     | 3712.513                   |        |      | 2.212                      |       |
| ANOVA      |                                               |                |                        |                         |                                  |                     |                            |        |      |                            |       |
| Model      | Sum of squares                                | df             | Mean                   | Mean square             |                                  |                     | F                          |        |      | Sig.                       |       |
| Regression | n 185051478.89                                | 9              | 30841                  | 30841913.15             |                                  |                     | 2.238                      |        |      | .063                       |       |
| Residual   | 468613637.16                                  | 34             | 13782                  | 3782754.03              |                                  |                     |                            |        |      |                            |       |
| Total      | 653665116.05                                  | 40             |                        |                         |                                  |                     |                            |        |      |                            |       |

| exure 2f. 2015 Value per square meter, Sandton only |
|-----------------------------------------------------|
| San                                                 |
| meter,                                              |
| square                                              |
| per                                                 |
| Value                                               |
| 2015                                                |
| 2f.                                                 |
| nexure                                              |

|                               |                                            | Des            | Descriptive statistics | S                       | Unstanc<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity<br>statistics | ity<br>S |
|-------------------------------|--------------------------------------------|----------------|------------------------|-------------------------|-------------------|--------------------------------|----------------------------|--------|------|----------------------------|----------|
| Model                         |                                            | Mean           | Std. deviation         | z                       | в                 | Std. error                     | β                          | -<br>t | Sig. | Tolerance                  | VIF      |
| Dependent variable: rent 2015 | ole: rent 2015                             | 121.67         | 26.990                 | 33                      |                   |                                |                            |        |      |                            |          |
| Predictors (Cor               | nstant)                                    |                |                        |                         | 196.624           | 30.346                         |                            | 6.479  |      |                            |          |
|                               | Distance from Gautrain                     | 3.341          | 3.0511                 | 33                      | -5.779            | 2.206                          | 653                        | -2.620 |      | .416                       | 2.403    |
| With                          | Within 500 m from bus stop/1 km of station | .848           | .3641                  | 33                      | -24.864           | 16.641                         | 335                        | -1.494 |      | .513                       | 1.948    |
| JUO                           | Office parks                               | .485           | .508                   | 33                      | -7.614            | 10.442                         | 143                        | 729    |      | .671                       | 1.490    |
| High                          | High rise offices                          | .091           | .292                   | 33                      | 7.904             | 18.405                         | .085                       | .429   |      | .653                       | 1.532    |
| Hati                          | Hatfield                                   | .121           | .331                   | 33                      | -3.179            | 15.062                         | 039                        | 211    |      | .756                       | 1.322    |
| Cen                           | Centurion                                  | .030           | .174                   | 33                      | -3.698            | 26.264                         | 024                        | 141    |      | .902                       | 1.109    |
| Mid                           | Midrand                                    | .061           | .242                   | 33                      | .599              | 20.381                         | .005                       | .029   |      | .773                       | 1.294    |
| Ros                           | Rosebank                                   | .152           | .364                   | 33                      | 9.001             | 16.338                         | .121                       | .551   | .587 | .533                       | 1.877    |
| Park                          | ~                                          | .091           | .292                   | 33                      | 3.463             | 16.774                         | .037                       | .206   |      | .786                       | 1.272    |
| Cap                           | Cap_rate2008                               | .1194          | .02548                 | 33                      | -274.694          | 207.152                        | 259                        | -1.326 |      | .677                       | 1.477    |
|                               |                                            |                |                        | Model s                 | Model summary     |                                |                            |        |      |                            |          |
| Model                         | B                                          | R <sup>2</sup> | Adiu                   | Adjusted R <sup>2</sup> |                   | 5                              | Std. error of the estimate |        | ā    | Durbin-Watson              |          |
| -                             | .656                                       | .431           |                        | .172                    |                   |                                | 24.560                     |        |      | 2.390                      |          |
| ANOVA                         |                                            |                |                        |                         |                   |                                |                            |        |      |                            |          |
| Model                         | Sum of squares                             | df             | Mea                    | Mean square             |                   |                                | F                          |        |      | Sig.                       |          |
| Regression                    | 10040.79                                   | 10             | 10                     | 1004.08                 |                   |                                | 1.665                      |        |      | .153                       |          |
| Residual                      | 13270.55                                   | 22             | 9                      | 603.21                  |                   |                                |                            |        |      |                            |          |
| Total                         | 23311.33                                   | 32             |                        |                         |                   |                                |                            |        |      |                            |          |

| D           |
|-------------|
|             |
| Ĕ           |
| -           |
| ×           |
| Ū           |
|             |
| 9           |
| <del></del> |
| Sandto      |
| <b>D</b>    |
|             |
| 1           |
| te          |
| e           |
| Ξ           |
| e me        |
| L           |
| Ĕ           |
| nbs         |
| S           |
| it per s    |
| ā           |
| -           |
| Ren         |
| ~           |
| 10          |
| 20151       |
| Ò           |
| 2           |
| ō           |
| N           |
| a           |
| Ĕ           |
| S           |
|             |

|                         |                                                        | Des            | Descriptive statistics | 10                      | Unstanc<br>coeffi | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity<br>statistics | ity<br>s |
|-------------------------|--------------------------------------------------------|----------------|------------------------|-------------------------|-------------------|--------------------------------|----------------------------|--------|------|----------------------------|----------|
| Model                   |                                                        | Mean           | Std. deviation         | z                       | В                 | Std. error                     | β                          | t      | Sig. | Tolerance                  | VIF      |
| Dependent<br>Predictors | Dependent variable: rent 2015<br>Predictors (Constant) | 121.67         | 26.99                  | 33                      | 183 384           | 29 443                         |                            | 6 2 28 | 000  |                            |          |
|                         | Distance from Gautrain                                 | 3.341          | 3.0511                 | 33                      | -5.884            | 2.003                          | 665                        | -2.938 | .007 | .436                       | 2.293    |
|                         | Within 500 m from bus stop/1 km of station             | .848           | .3641                  | 33                      | -25.175           | 15.363                         | 340                        | -1.639 | .113 | .520                       | 1.922    |
|                         | High rise offices                                      | .091           | .292                   | 33                      | 14.625            | 15.767                         | .158                       | .928   | .362 | .769                       | 1.301    |
|                         | Low rise offices                                       | .424           | .502                   | 33                      | 9.456             | 8.806                          | .176                       | 1.074  | .293 | .834                       | 1.199    |
|                         | Cap_rate2008                                           | .119           | .02548                 | 33                      | -211.799          | 170.847                        | 200                        | -1.240 | .226 | .860                       | 1.163    |
|                         | Sandton                                                | .545           | .506                   | 33                      | -1.380            | 9.794                          | 026                        | 141    | .889 | .664                       | 1.506    |
|                         |                                                        |                |                        |                         |                   |                                |                            |        |      |                            |          |
|                         |                                                        |                | 2                      | Aodel si                | Model summary     |                                |                            |        |      |                            |          |
| Model                   | R                                                      | R <sup>2</sup> | Adjus                  | Adjusted R <sup>2</sup> |                   | St                             | Std. error of the estimate |        | Ď    | Durbin-Watson              |          |
| 1                       | .647                                                   | .419           | .2                     | .285                    |                   |                                | 22.828                     |        |      | 2.414                      |          |
| ANOVA                   |                                                        |                |                        |                         |                   |                                |                            |        |      |                            |          |
| Model                   | Sum of squares                                         | df             | Mean                   | Mean square             |                   |                                | F                          |        |      | Sig.                       |          |
| Regression              | 9762.59                                                | 9              | 162                    | 1627.10                 |                   |                                | 3.122                      |        |      | .019                       |          |
| Residual                | 13548.75                                               | 26             | 52                     | 521.11                  |                   |                                |                            |        |      |                            |          |
| Total                   | 23311.33                                               | 32             |                        |                         |                   |                                |                            |        |      |                            |          |
|                         |                                                        |                |                        |                         |                   |                                |                            |        |      |                            |          |

| nly             |
|-----------------|
| uo u            |
| ton             |
| ē               |
| Sand            |
|                 |
| meter,          |
| G               |
| Ξ               |
| <b>9</b>        |
| a               |
| 2               |
| SC              |
| Rent per square |
| Q               |
| Ţ               |
| D               |
|                 |
| 2015            |
| 6               |
| Ň               |
| Ė               |
| 2               |
| a               |
| 3               |
| nexu            |
| ne              |
| =               |

|            |                                      | Dec            | Descriptive statistics |      | Unstai<br>coef          | Unstandardised<br>coefficients | Standardised coefficients |                |              | Collinearity statistics | tatistics |
|------------|--------------------------------------|----------------|------------------------|------|-------------------------|--------------------------------|---------------------------|----------------|--------------|-------------------------|-----------|
| Model      |                                      | Mean           | Std. deviation         | z    | В                       | Std. error                     | β                         | - t            | Sig.         | Tolerance               | VIF       |
| Dependent  | Dependent variable: value growth     | .088%          | .051%                  | 41   | 000                     |                                |                           | 0              | 500          |                         |           |
| Predictors | (Constant)<br>Distance from Gautrain | 3.367          | 2.9878                 | 41   | 006<br>-                | .003<br>003                    | 349                       | 3.818<br>1.896 | .001<br>100. | .657                    | 1.522     |
|            | GLA 2008                             | 9308.610       | 7935.3560              | 41   | 000.                    | 000.                           | 060                       | 361            | .721         | .799                    | 1.251     |
|            | Office parks                         | .488           | .506                   | 41   | .039                    | .017                           | .383                      | 2.249          | .032         | .768                    | 1.302     |
|            | High rise offices                    | .073           | .264                   | 41   | .011                    | .033                           | .057                      | .337           | .738         | .781                    | 1.280     |
|            | Hatfield                             | 860.           | .300                   | 41   | 029                     | .029                           | 173                       | -1.018         | .316         | .774                    | 1.292     |
|            | Centurion                            | .049           | .218                   | 41   | 002                     | .038                           | 007                       | 045            | .964         | .863                    | 1.159     |
|            | Midrand                              | .146           | .358                   | 41   | 019                     | .023                           | 135                       | 823            | .417         | .832                    | 1.202     |
|            | Rosebank                             | .146           | .358                   | 41   | .046                    | .026                           | .321                      | 1.787          | .084         | .692                    | 1.444     |
|            | Park                                 | .073           | .26365                 | 41   | .027                    | .032                           | .141                      | .862           | .395         | .836                    | 1.196     |
|            |                                      |                |                        |      | Model summary           | mmarv                          |                           |                |              |                         |           |
| Model      |                                      | ď              | R <sup>2</sup>         | Adin | Adjusted R <sup>2</sup> | 、                              | Std error of the estimate |                |              | Durhin-Watson           |           |
| 1          | •                                    | .556           | .309                   |      | .108                    |                                | .000                      |                |              | 2.081                   |           |
| ANOVA      |                                      |                |                        |      |                         |                                |                           |                |              |                         |           |
| Model      | Sum c                                | Sum of squares | df                     | Mear | Mean square             |                                | F                         |                |              | Sig.                    |           |
| Regression |                                      | .032           | 6                      | •    | 004                     |                                | 1.538                     |                |              | .179                    |           |
| Residual   |                                      | .073           | 31                     | •    | .002                    |                                |                           |                |              |                         |           |
| Total      |                                      | .105           | 40                     |      |                         |                                |                           |                |              |                         |           |
|            |                                      |                |                        |      |                         |                                |                           |                |              |                         |           |

| _     |
|-------|
| Ba    |
| Ō     |
| exclu |
| Ŀ     |
| ā     |
| 2     |
| 0     |
| đ     |
| ano   |
|       |
| Š     |
| ÷     |
| ž     |
| б     |
| 6     |
|       |
| 3     |
| a     |
| >     |
| tal   |
| đ     |
| Ĕ     |
| ŝ     |
| 5     |
| 20    |
|       |
| 08    |
| Ō     |
|       |
| a.    |
| m     |
| exure |
| 3     |
| ă     |
| -     |

|                                  |                        | Des            | Descriptive statistics |      | Unsta<br>coe            | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity statistics | tatistics |
|----------------------------------|------------------------|----------------|------------------------|------|-------------------------|--------------------------------|----------------------------|--------|------|-------------------------|-----------|
| Model                            |                        | Mean           | Std. deviation         | z    | в                       | Std. error                     | β                          | t      | Sig. | Tolerance               | VIF       |
| Dependent variable: value growth | /alue growth           | .088%          | .051%                  | 41   |                         |                                |                            |        |      |                         |           |
| Predictors (Const                | tant)                  |                |                        |      | .133                    | .022                           |                            | 6.072  |      |                         |           |
| Distan                           | Distance from Gautrain | 3.367          | 2.9878                 | 41   | 006                     | .003                           | 366                        | -1.949 |      | .689                    | 1.452     |
| GLA 2(                           | 008                    | 9308.610       | 7935.3560              | 41   | 000.                    | 000.                           | 117                        | 725    |      | .932                    | 1.073     |
| Highn                            | ise offices            | .073           | .264                   | 41   | 044                     | .033                           | 225                        | -1.322 |      | .840                    | 1.190     |
| Low ris                          | Low rise offices       | .439           | .502                   | 41   | 027                     | .017                           | 262                        | -1.541 | .132 | .840                    | 1.191     |
| Sandton                          | on                     | .488           | .506                   | 41   | 004                     | .018                           | 038                        | 214    |      | .781                    | 1.281     |
|                                  |                        |                |                        |      |                         |                                |                            |        |      |                         |           |
|                                  |                        |                |                        |      | Model summary           | immary                         |                            |        |      |                         |           |
| Model                            | R                      | ~              | R <sup>2</sup>         | Adju | Adjusted R <sup>2</sup> |                                | Std. error of the estimate |        |      | Durbin-Watson           |           |
| -                                | .387                   | 37             | .150                   |      | .028                    |                                | .001                       |        |      | 1.868                   |           |
| ANOVA                            |                        |                |                        |      |                         |                                |                            |        |      |                         |           |
| Model                            | Sum of :               | Sum of squares | df                     | Mea  | Mean square             |                                | F                          |        |      | Sig.                    |           |
| Regression                       | .016                   | 16             | 5                      |      | .003                    |                                | 1.234                      |        |      | .314                    |           |
| Residual                         | 30.                    | 39             | 35                     |      | .003                    |                                |                            |        |      |                         |           |
| Total                            | 1(                     | 105            | 40                     |      |                         |                                |                            |        |      |                         |           |

Annexure 3b. 2008–2015 Total value growth, Sandton only

| Model<br>Dependent variable: value/m <sup>2</sup> growth |                | Des      | Descriptive statistics |      | unsta.<br>coet          | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity statistics | statistics |
|----------------------------------------------------------|----------------|----------|------------------------|------|-------------------------|--------------------------------|----------------------------|--------|------|-------------------------|------------|
| Dependent variable: value                                |                | Mean     | Std. deviation         | z    | в                       | Std. error                     | β                          | t      | Sig. | Tolerance               | VIF        |
|                                                          |                | .076%    | .041%                  | 41   |                         |                                |                            |        |      |                         |            |
| Predictors (Constant)                                    |                |          |                        |      | .074                    | .016                           |                            | 4.518  | 000  |                         |            |
|                                                          | om Gautrain    | 3.367    | 2.9878                 | 41   | 005                     | .002                           | 343                        | -2.103 | .044 | .657                    | 1.522      |
| GLA 2008                                                 |                | 9308.610 | 7935.3560              | 41   | 000.                    | 000.                           | 012                        | 081    | .936 | 799                     | 1.251      |
| Office park                                              |                | .488     | .506                   | 41   | .026                    | .012                           | .322                       | 2.134  | .041 | .768                    | 1.302      |
| High rise offices                                        |                | .073     | .264                   | 41   | .014                    | .023                           | .092                       | .617   | .542 | .781                    | 1.280      |
| Hatfield                                                 |                | .098     | .300                   | 41   | 019                     | .020                           | 138                        | 916    | .367 | .774                    | 1.292      |
| Centurion                                                |                | .049     | .218                   | 41   | 040                     | .026                           | 216                        | -1.521 | .138 | .863                    | 1.159      |
| Midrand                                                  |                | .146     | .358                   | 41   | 010                     | .016                           | 090                        | 622    | .539 | .832                    | 1.202      |
| Rosebank                                                 |                | .146     | .358                   | 41   | .054                    | .018                           | .475                       | 2.990  | .005 | .692                    | 1.444      |
| Park                                                     |                | .073     | .26365                 | 41   | .032                    | .022                           | .210                       | 1.454  | .156 | .836                    | 1.196      |
|                                                          |                |          |                        |      |                         |                                |                            |        |      |                         |            |
|                                                          |                |          |                        |      | Model summary           | mmary                          |                            |        |      |                         |            |
| Model                                                    | R              |          | R <sup>2</sup>         | Adju | Adjusted R <sup>2</sup> |                                | Std. error of the estimate |        |      | Durbin-Watson           | E          |
| 1                                                        | .677           |          | .459                   |      | .302                    |                                | 000 <sup>.</sup>           |        |      | 2.089                   |            |
| ANOVA                                                    |                |          |                        |      |                         |                                |                            |        |      |                         |            |
| Model                                                    | Sum of squares | res      | df                     | Mear | Mean square             |                                | F                          |        |      | Sig.                    |            |
| Regression                                               | .030           |          | 6                      | -    | .003                    |                                | 2.919                      |        |      | .013                    |            |
| Residual                                                 | .036           |          | 31                     |      | .001                    |                                |                            |        |      |                         |            |
| Total                                                    | .066           |          | 40                     |      |                         |                                |                            |        |      |                         |            |

Annexure 3c. 2008–2015 Value per square meter growth, Sandton excluded

|            |                                                 |                | Decriptive statistics |     | Unstar                  | Unstandardised | Standsrad coofficients     |        |      | Collinearity statistics | tatictice |
|------------|-------------------------------------------------|----------------|-----------------------|-----|-------------------------|----------------|----------------------------|--------|------|-------------------------|-----------|
| Model      |                                                 | Mean           | Std. deviation        | z   | B                       | Std. error     | B                          | -<br>t | Sia. | Tolerance               | VIF       |
| Denendent  | Dependent variable: value/m <sup>2</sup> growth | 076%           | 041%                  | 41  |                         |                | L                          |        | 'n   |                         |           |
| Predictors | (Constant)                                      |                |                       | :   | .105                    | .017           |                            | 6.000  | 000  |                         |           |
|            | Distance from Gautrain                          | 3.367          | 2.9878                | 41  | 005                     | .003           | 343                        | -1.811 | 070  | .689                    | 1.452     |
|            | GLA 2008                                        | 9308.610       | 7935.3560             | 41  | 000.                    | 000            | 040                        | 244    | .808 | .932                    | 1.073     |
|            | High Rise Offices                               | .073           | .264                  | 41  | 022                     | .026           | 144                        | 842    | .406 | .840                    | 1.190     |
|            | Low Rise Offices                                | .439           | .502                  | 41  | 013                     | .014           | 156                        | 909    | .369 | .840                    | 1.191     |
|            | Sandton                                         | .488           | .506                  | 41  | 008                     | .014           | 100                        | 560    | .579 | .781                    | 1.281     |
|            |                                                 |                |                       |     | Model summary           | mmary          |                            |        |      |                         |           |
| Model      | 4                                               | 8              | R <sup>2</sup>        | Ad  | Adjusted R <sup>2</sup> |                | Std. error of the estimate |        |      | Durbin-Watson           | _         |
| 1          | .3(                                             | .369           | .136                  |     | .013                    |                | 000.                       |        |      | 1.528                   |           |
| ANOVA      |                                                 |                |                       |     |                         |                |                            |        |      |                         |           |
| Model      | Sum of .                                        | Sum of squares | df                    | Meá | an square               |                | F                          |        |      | Sig.                    |           |
| Regression |                                                 | 60             | 5                     |     | .002                    |                | 1.105                      |        |      | .375                    |           |
| Residual   |                                                 | .057           | 35                    |     | .002                    |                |                            |        |      |                         |           |
| Total      |                                                 | 66             | 40                    |     |                         |                |                            |        |      |                         |           |

| -        |
|----------|
| -        |
|          |
| ō        |
| -        |
|          |
| Jdto     |
| -        |
| 2        |
|          |
| <b>N</b> |
| S        |
| È        |
| wth      |
| ž        |
| - 5      |
| Iro      |
| <u> </u> |
| σ        |
| <u> </u> |
| meter    |
| ē        |
| 2        |
| e met    |
|          |
| Ō        |
| duã      |
| 0        |
| Š        |
| r s      |
| Ð        |
| ×        |
|          |
| Value    |
| 5        |
| -        |
| ູຕ       |
| >        |
| 15 Val   |
|          |
| 0        |
| 201      |
|          |
| 2008     |
| Z        |
| 0        |
| 2        |
| -        |
| ň        |
| 0        |
| Ľ        |
| 5        |
| ×        |
| Ū        |
| ć        |
| 2        |

|                                 | De             | Descriptive statistics |     | Unsta<br>coé            | Unstandardised<br>coefficients | Standardised coefficients  |        |      | Collinearity statistics | statistics |
|---------------------------------|----------------|------------------------|-----|-------------------------|--------------------------------|----------------------------|--------|------|-------------------------|------------|
| Model                           | Mean           | Std. deviation         | z   | в                       | Std. error                     | β                          | -<br>t | Sig. | Tolerance               | VIF        |
| Dependent variable: rent growth | .062%          | .036%                  | 33  |                         |                                |                            |        |      |                         |            |
| Predictors (Constant)           |                |                        |     | .065                    | .019                           |                            | 3.490  | .002 |                         |            |
|                                 |                | 3.0511                 | 33  | 004                     | .003                           | 350                        | -1.595 | .124 | .642                    | 1.557      |
| GLA 2008                        |                | 8588.2517              | 33  | 000.                    | 000                            | 019                        | 092    | .928 | .725                    | 1.380      |
| Office parks                    | .485           | .508                   | 33  | 900.                    | .015                           | .091                       | .433   | 699. | .702                    | 1.425      |
| High rise offices               | .091           | .292                   | 33  | .023                    | .027                           | .187                       | .857   | .400 | .646                    | 1.548      |
| Hatfield                        | .121           | .331                   | 33  | .008                    | .022                           | .076                       | .375   | .711 | .754                    | 1.326      |
| Centurion                       | .030           | .174                   | 33  | 007                     | .038                           | 032                        | 175    | .863 | 908.                    | 1.101      |
| Midrand                         | .061           | .242                   | 33  | .014                    | .031                           | .093                       | .439   | .664 | .687                    | 1.455      |
| Rosebank                        | .152           | .364                   | 33  | .012                    | .021                           | .118                       | .560   | .581 | .696                    | 1.437      |
| Park                            | .091           | .29194                 | 33  | .028                    | .024                           | .230                       | 1.181  | .250 | .817                    | 1.223      |
|                                 |                |                        |     |                         |                                |                            |        |      |                         |            |
|                                 |                |                        |     | Model summary           | ummary                         |                            |        |      |                         |            |
| Model                           | R              | R <sup>2</sup>         | Adj | Adjusted R <sup>2</sup> |                                | Std. error of the estimate |        |      | Durbin-Watson           |            |
| 1                               | .538           | .290                   | •   | .012                    |                                | .000                       |        |      | 2.170                   |            |
| ANOVA                           |                |                        |     |                         |                                |                            |        |      |                         |            |
| Model S                         | Sum of squares | df                     | Mea | Mean square             |                                | F                          |        |      | Sig.                    |            |
| Regression                      | .012           | 6                      |     | .001                    |                                | 1.044                      |        |      | .437                    |            |
| Residual                        | .029           | 23                     |     | .001                    |                                |                            |        |      |                         |            |
| Total                           | .041           | 32                     |     |                         |                                |                            |        |      |                         |            |
|                                 |                | 1                      |     |                         |                                |                            |        |      |                         |            |

Annexure 3e. 2008–2015 Rent per square meter growth, Sandton excluded

|             |                                      | Des            | Descriptive statistics |      | Unsta<br>coe            | Unstandardised<br>coefficients | Standardised coefficients  |                 |              | Collinearity statistics | tatistics |
|-------------|--------------------------------------|----------------|------------------------|------|-------------------------|--------------------------------|----------------------------|-----------------|--------------|-------------------------|-----------|
| Model       |                                      | Mean           | Std. deviation         | z    | В                       | Std. error                     | β                          | t               | Sig.         | Tolerance               | VIF       |
| Dependent v | Dependent variable: rent growth      | .062%          | .036%                  | 33   | 000                     | Ĩ                              |                            |                 | 000          |                         |           |
| Predictors  | (Constant)<br>Distance from Gautrain | 3.341          | 3.0511                 | 33   | 004                     | .002                           | 343                        | 4.877<br>-1.701 | .100<br>.100 | .670                    | 1.493     |
|             | GLA 2008                             | 9790.455       | 8588.2517              | 33   | 000.                    | 000.                           | .022                       | .128            | 899.         | .905                    | 1.105     |
|             | Sandton                              | .55            | .506                   | 33   | 013                     | .014                           | 183                        | 947             | .352         | .735                    | 1.361     |
|             | High rise offices                    | 60.            | .292                   | 33   | .015                    | .023                           | .125                       | .677            | .504         | .806                    | 1.241     |
|             | Low rise offices                     | .42            | .502                   | 33   | 006                     | .013                           | 085                        | 461             | .649         | .803                    | 1.245     |
|             |                                      |                |                        |      |                         |                                |                            |                 |              |                         |           |
|             |                                      |                |                        |      | Model summary           | ummary                         |                            |                 |              |                         |           |
| Model       |                                      | R              | R <sup>2</sup>         | Adju | Adjusted R <sup>2</sup> |                                | Std. error of the estimate |                 |              | Durbin-Watson           |           |
| -           | j.                                   | .513           | .263                   |      | .126                    |                                | 000.                       |                 |              | 2.162                   |           |
| ANOVA       |                                      |                |                        |      |                         |                                |                            |                 |              |                         |           |
| Model       | Sum of                               | Sum of squares | df                     | Meai | Mean square             |                                | F                          |                 |              | Sig.                    |           |
| Regression  | 0.                                   | .011           | 5                      |      | .002                    |                                | 1.927                      |                 |              | .123                    |           |
| Residual    | 0.                                   | .030           | 27                     |      | .001                    |                                |                            |                 |              |                         |           |
| Total       | C                                    | 041            | 37                     |      |                         |                                |                            |                 |              |                         |           |

Annexure 3f. 2008–2015 Rent per square meter growth, Sandton only